Klasterisasi Bibit Terbaik Menggunakan Algoritma K-Means dalam Meningkatkan Penjualan
|
Keywords:
Data mining, Clustering, K-Means, RapidMiner, Bibit
AbstractTiara Bersaudara is a shop that sells seeds and agricultural needs. To maintain a stock of seeds that farmers are interested in, sellers must be able to analyze seed sales data. This process is difficult to do because UD has a lot of sales data. The existing problem can be solved by clustering seed sales data. Clustering is grouping data into several clusters based on the level of data similarity. The research objective was to group the best-selling seedlings in UD.Tiara Bersaudara in increasing sales. Seed sales data from January to April 2019 are data that will be processed in this study. The clustering method uses the K-Means algorithm by partitioning the data into clusters based on the closest centroid to the data. Then the test is done by comparing the calculation results with the Rapid Miner studio 9.7 software. Clustering is tested based on lots of data and many clusters. The data tested were 42 seedlings by obtaining 2 clusters, 4 data which were best-selling seeds as cluster one (C1), and 38 data which were unsold seeds as cluster two (C2). Best-selling seeds are the best seeds that can increase sales consisting of Bibit Jagung NK 212, Bibit Jagung NK 7328, bibit Jagung Pioneer 32, Bibit Jagung NK 617232. The results of this study can be used as benchmarks for decision support by UD.Tiara Berasaudara to set up a marketing strategy to increase sales. Downloads
Download data is not yet available.
ReferencesHasanah, M., Defit, S., & Nurcahyo, G. W. (2019). Implementasi Algoritma K-Means untuk Klasterisasi Peserta Olimpiade Sains Nasional Tingkat SMA. Jurnal Sistim Informasi dan Teknologi, 1(3), 30-35. DOI: https://doi.org/10.35134/jsisfotek.v1i3.7 . Febianto, N. I., & Palasara, N. (2019). Analisa Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018. Jurnal Sisfokom (Sistem Informasi dan Komputer), 8(2), 130-140. DOI: https://doi.org/10.32736/sisfokom.v8i2.653 . Joseph, S. I. T., & Thanakumar, I. (2019). Survey Of Data Mining Algorithm’s For Intelligent Computing System. Journal of Trends In Computer Science And Smart Technology (TCSST), 1(1), 14-24. DOI: https://doi.org/10.36548/jtcsst.2019.1.002 . Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51-58. DOI: http://dx.doi.org/10.30865/mib.v4i1.1784 . Pandiangan, N., & Buono, M. L. C. (2019). K-Means Clustering Dalam Mengelompokkan Nilai Akhir Skripsi Mahasiswa. Musamus Journal of Technology & Information (MJTI), 1(02), 42-46. Ahmed, S. R. A., Al Barazanchi, I., Jaaz, Z. A., & Abdulshaheed, H. R. (2019). Clustering Algorithms Subjected To K-Mean And Gaussian Mixture Model On Multidimensional Data Set. Periodicals of Engineering and Natural Sciences, 7(2), 448-457. DOI: http://dx.doi.org/10.21533/pen.v7i2.484 . Nishom, M., & Fathoni, M. Y. (2018). Implementasi Pendekatan Rule-Of-Thumb untuk Optimasi Algoritma K-Means Clustering. Jurnal Informatika, 3(2). DOI: http://dx.doi.org/10.30591/jpit.v3i2.909 . Yunita, F. (2018). Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru. Sistemasi: Jurnal Sistem Informasi, 7(3), 238-249. DOI: https://doi.org/10.32520/stmsi.v7i3.388 . Indriyani, F., & Irfiani, E. (2019). Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika, 7(2), 109-113. DOI: http://dx.doi.org/10.30595/juita.v7i2.5529 . Liu, R. Q., Lee, Y. C., & Mu, H. L. (2018). Customer Classification and Market Basket Analysis using K-Means Clustering and Association Rules: Evidence from Distribution Big Data of Korean Retailing Company. Dongguk University. Korea. DOI: http://dx.doi.org/10.15813/kmr.2018.19.4.004 . Yang, G., Hao, X., & Zhang, Y. (2018). Research and Application of Power Consumers Behavior Analysis Based on K-Means Algorithm. In 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Atlantis Press. DOI: https://doi.org/10.2991/iceesd-18.2018.44 . Bhargava, A. (2019). Grouping of Medicinal Drugs Used for Similar Symptoms by Mining Clusters from Drug Benefits Reviews. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM). DOI: http://dx.doi.org/10.2139/ssrn.3356314 . |
Published
2021-03-31
Section
Articles
How to Cite
Hartati, Y., Defit, S., & Nurcahyo, G. W. (2021). Klasterisasi Bibit Terbaik Menggunakan Algoritma K-Means dalam Meningkatkan Penjualan . Jurnal Informatika Ekonomi Bisnis, 3(1), 1-7. https://doi.org/10.37034/infeb.v3i1.56
![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |


















