Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Simulasi Monte Carlo dalam Memprediksi Tingkat Lonjakan Penumpang

  • Dina Mardiati
    Universitas Putra Indonesia YPTK Padang


DOI: https://doi.org/10.37034/infeb.vi0.49
Keywords: Modeling and Simulation, Monte Carlo, Prediction, Passengers, Transportation

Abstract

Tri Arga Travel is a company engaged in transportation services. The company really prioritizes the quality of service to consumers. So that on holidays there is usually a surge in passengers that cannot be predicted by the company. This greatly affects service to passengers. The purpose of this research is to predict the surge rate of PT. Tri Arga Travel, making it easier for the leadership of PT. Tri Arga Travel to take a policy when there is a surge in passengers in the future. The data used in this study is data on the number of passengers in 2017, 2018, and 2019 with the aim of padang-perawang. Then, the data is processed using the Monte Carlo method. The Monte Carlo method is a simulation method that uses random numbers obtained from the Linear Congruential Generator (LCG) to predict the rate of passenger spike in the following year by utilizing the previous year's passenger data. The results obtained from testing the Monte Carlo simulation can be seen that in July it is predicted that there will be a surge in passengers with an average level of accuracy of 86.74%. With a fairly high level of accuracy, the application of the Monte Carlo method can be used as a recommendation to predict the level of passenger spikes and also help in improving services to prospective passengers of PT. Tri Arga Travel.

Downloads

Download data is not yet available.

References

Geni, B. Y., Santony, S., & Sumijan. (2019). Prediksi Pendapatan Terbesar Pada Penjualan Produk Cat Dengan Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 1(4), 15-20. DOI: https://doi.org/10.37034/infeb.v1i4.5 .

Fujimoto, R., Bock, C., Chen, W., Page, E., & Panchal, J. H. (2017). Research Challenges In Modeling and Simulation For Engineering Complex Systems. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-58544-4 .

Mahessya, R. A. (2017). Pemodelan dan Simulasi Sistem Antrian Pelayanan Pelanggan menggunakan Metode Monte Carlo pada PT. Pos Indonesia (Persero) Padang. Jurnal Ilmu Komputer, 6(1), 15–24. DOI: https://dx.doi.org/10.33060/jik/2017/vol6.iss1.41 .

Yusmaity., Santony, J., & Yunus, Y. (2019). Simulasi Monte Carlo untuk Memprediksi Hasil Ujian Nasional (Studi Kasus di SMKN 2 Pekanbaru). Jurnal Informasi dan Teknologi, 1(4), 1-6. DOI: https://doi.org/10.37034/jidt.v1i4.21 .

Zalmadani, H., Santony, J., & Yunus, Y. (2020). Prediksi Optimal dalam Produksi Bata Merah Menggunakan Metode Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 2(1), 13-20. DOI: https://doi.org/10.37034/infeb.v2i1.11 .

Han, Z., Su, B., Li, Y. G., Ma, Y. F., Wang, W. D., & Cheng, G. Q. (2019). An Enhanced Image Binarization Method Incorporating With Monte-Carlo Simulation. Journal of Central South University, 26, 1661–1671. DOI: https://doi.org/10.1007/s11771-019-4120-9 .

Hartini, E., Adrial, H., & Santosa Pujiarta. (2019). Reliability Analysis of Primary and Purification Pumps in RSG-GAS Using Monte Carlo Simulation Approach. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 21(1), 15-22. DOI: http://dx.doi.org/10.17146/tdm.2019.21.1.5311 .

Syahrin, E., Santony, J., & Na’am, J. (2019). Pemodelan Penjualan Produk Herbal Menggunakan Metode Monte Carlo. Jurnal KomtekInfo, 5(3), 33-41. DOI: https://doi.org/10.35134/komtekinfo.v5i3.148 .

Mardiansyah, R. F., Kusrini, E., & RM, Faisal. (2017). Analisa Ekonomis Peralatan Pulverizer untuk Optimalisasi Keandalan PLTU dengan Simulasi Monte Carlo dan Pendekatan Analisa Siklus Hidup (Studi Kasus: PLTU X). Jurnal Teknologi Industri (Teknoin), 23(3). 257- 288. DOI: https://doi.org/10.20885/teknoin.vol23.iss3.art8 .

Adisalam, B. G., Gunawan, P.H., & Imrona, M. (2017). Deteksi Kemacetan Lalu Lintas dengan Menggunakan Algoritma Monte Carlo. Indonesian Journal on Computing (Indo-JC), 2(2), 23-36. DOI: http://dx.doi.org/10.21108/INDOJC.2017.2.2.174 .

Aouini, S., Sahdane, T., Mhirech, A., Bahmad, L., & Kabouchi, B. (2020). Study of the Magnetic Properties of the Compound Mn Bi Using the Monte Carlo Simulations. Journal of Superconductivity and Novel Magnetism 33, 1803–1807. DOI: https://doi.org/10.1007/s10948-020-05433-1 .

Rahmawati, R., Rusgiyono, A., Hoyyi, A., & Maruddani, D. A. I. (2019). Expected Shortfall dengan Simulasi Monte Carlo untuk Mengukur Risiko Kerugian Petani Jagung. Media Statistika, 12(1), 117-128. DOI: https://doi.org/10.14710/medstat.12.1.117-128 .

Srivastava, A. K., Kumar, G., & Gupta, P. (2020). Estimating maintenance budget using Monte Carlo simulation. Life Cycle Reliability and Safety Engineering, 9, 77–89. DOI: https://doi.org/10.1007/s41872-020-00110-7 .

Astia, R. Y., Santony, J., & Sumijan. (2019). Prediction of Amount Of Use Of Planning Family Contraception Equipment Using Monte Carlo Method (Case Study In Linggo Sari Baganti District). Indonesian Journal of Artificial Intelligence and Data Mining, 2(1), 28-36. DOI: http://dx.doi.org/10.24014/ijaidm.v2i1.5825 .

Bertot, L., Genaud, S., & Gossa, J. (2018). Improving Cloud Simulation Using the Monte-Carlo Method. In Lecture Notes in Computer Science, 11014, 404-416. DOI: https://doi.org/10.1007/978-3-319-96983-1_29 .

Download
Published
2020-09-30
Issue
Vol. 2, No. 3 (September 2020)
Section
Articles
How to Cite
Mardiati, D. (2020). Simulasi Monte Carlo dalam Memprediksi Tingkat Lonjakan Penumpang. Jurnal Informatika Ekonomi Bisnis, 92-97. https://doi.org/10.37034/infeb.vi0.49
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).