Pengendalian Persediaan Darah untuk Pasien dengan Hemoglobin Rendah Menggunakan Metode Backpropagation
Keywords:
Control, Blood, Hemoglobin, Backpropagation, Matlab
AbstractThe Blood Transfusion Unit (UTD) of the Rokan Hulu Regional General Hospital (RSUD) has an important role to fulfill the demand for blood from patients. Patients who need blood donation are patients with low hemoglobin levels. The problem faced by the UTD-RS is that they have not been able to meet the needs of each patient's blood request optimally. The reason is because it is not able to predict the need for blood that will come. To see the pattern of blood demand and then determine the appropriate inventory control method to assist the planning process for the fulfillment of blood supply at UTD in the next period. Materials (data) and Methods: The data processed in this study were patient data and blood demand data from January 2020 to January 2021. The data were sourced from the Laboratory Installation and UTD at the Rokan Hulu Hospital. The data is divided into training data and testing data. Then the blood demand data is processed by normalizing it first and then the prediction process is carried out using the Backpropagation method. Then analyzed and tested with the help of Matlab software. This study uses the best network architecture pattern produced is 5-5-1 with an accuracy rate of 68% and a Mean Squared Error value of 0.198. The backpropagation method used is able to help UTD Rokan Hulu Hospital to find out the blood needs that must be met so that the blood supply can be controlled. So that every blood request from patients with low hemoglobin can be met quickly. Downloads
Download data is not yet available.
References
[1] J. Zhang and S. Qu, “Optimization of Backpropagation Neural Network under the Adaptive Genetic Algorithm,” Complexity, vol. 2021, pp. 1–9, Jul. 2021, doi: 10.1155/2021/1718234.
[2] R. Aulia, “Penerapan Metode Backpropagation Untuk Memprediksi Jumlah Kunjungan Wisatawan Berdasarkan Tingkat Hunian Hotel,” Jurteksi, vol. 4, no. 2, pp. 115–122, 2018, doi: 10.33330/jurteksi.v4i2.45. [3] M. Pang, L. P. Dewi, and Yulia, “Implementasi Sistem Administrasi dan Inventory Control pada Warehouse UD . X,” J. Infra, vol. 9 No.1, 2021. [4] M. Amin Kadafi and A. Delvina, “Analisis pengendalian persediaan bahan baku dengan safety stock optimum,” Forum Ekon., vol. 23, no. 3, pp. 553–560, 2021, [Online]. Available: http://journal.feb.unmul.ac.id/index.php/FORUMEKONOMI. [5] M. Thoriq, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., vol. 4, pp. 27–32, 2022, doi: 10.37034/jidt.v4i1.178. [6] P. Purnawansyah, H. Sukirno, H. J. Setyadi, K. Wong, R. Alfred, and A. P. Wibawa, “An Inflation Rate Prediction Based on Backpropagation Neural Network Algorithm,” Int. J. Artif. Intell. Res., vol. 3, no. 2, 2019, doi: 10.29099/ijair.v3i2.112. [7] H. N. Nguyen et al., “Prediction of daily and monthly rainfall using a backpropagation neural Network,” J. Appl. Sci. Eng., vol. 24, no. 3, pp. 367–379, 2021, doi: 10.6180/jase.202106_24(3).0012. [8] N. Nico Kurniawan Purba, 2 Rusmin Saragih and Program, “Jaringan Syaraf Tiruan Memprediksi Jumlah Kebutuhan Air Bersih di Kota Binjai Menggunakan Metode Backpropagation (Studi,” Algoritm. J. Ilmu Komput. dan Inform., vol. 5, no. 2, pp. 90–100, 2021. [9] S. A. Astiti, G. I. Marthasari, and Y. Azhar, “Implementasi Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras,” Repositor, vol. 3, no. 5, pp. 483–492, 2021. [10] S. A. Salimu and Y. Yunus, “Prediksi Tingkat Kedatangan Wisatawan Asing Menggunakan Metode Backpropagation (Studi Kasus: Kepulauan Mentawai),” J. Inform. Ekon. Bisnis, vol. 2, pp. 98–103, 2020, doi: 10.37034/infeb.v2i4.50. [11] M. H. Kurniawan, S. Defit, and Y. Yunus, “Pemetaan Promosi dalam Penjaringan Calon Mahasiswa Menggunakan Algoritma Backpropagation,” J. Inform. Ekon. Bisnis, vol. 2, no. 1, pp. 21–26, 2020, doi: 10.37034/infeb.v2i1.17. [12] Nandel Syofneri, Sarjon Defit, and Sumijan, “Implementasi Metode Backpropagation untuk Memprediksi Tingkat Kelulusan Uji Kopetensi Siswa,” J. Inf. Teknol., vol. 1, no. 4, pp. 12–17, 2019, doi: 10.37034/jidt.v1i4.13. [13] N. A. Abidin, M. Assidiq, and A. Qaslim, “Sistem Prediksi Kelulusan Mahasiswa Dengan Metode Backpropagation Neural Network,” J. Ilm. Maju, vol. 4, no. 2, pp. 1–5, 2021. [14] A. M. G. Pawoko, I. Cholissodin, and R. K. Dewi, “Prediksi Jumlah Permintaan Semen Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pegembangan Teknol. Inf. dan Imlu Komput., vol. 3, no. 1, pp. 347–353, 2019. [15] I. L. Sirait, J. M. Gultom, J. Tindaon, R. J. Tampubolon, and W. J. Mawaddah, “Peramalan Tingkat Produktivitas Kedelai di Indonesia Menggunakan Algoritma Backpropagation,” Seman TIK, vol. 4, no. 2, pp. 183–192, 2018. [16] M. Yanto, E. P. W. Mandala, D. E. Putri, and Y. Yuhandri, “Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network,” J. Media Inform. Budidarma, vol. 2, no. 3, pp. 110–117, 2018, doi: 10.30865/mib.v2i3.811. [17] M. F. Rozi, D. Hartama, I. P. Sari, R. Dewi, and Z. A. Siregar, “Backpropagation Model in Predicting the Location of Prospective Freshman Schools for Promotion Optimization,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 1, pp. 23–30, 2022, doi: 10.55123/jomlai.v1i1.161. [18] M. R. Zamroni and S. Mujilahwati, “Metode Jaringan Syaraf Tiruan Untuk Memprediksi Penjualan Pakaian Pada Distro Di Lamongan,” J. Mnemon., vol. 5, no. 1, pp. 26–30, 2022, doi: 10.36040/mnemonic.v5i1.4459. [19] A. Dzulfikar, N. Ramsari, S. Sutjiningtyas, and P. Per, “IMPLEMENTASI PERAMALAN PENJUALAN PRODUK DI PT . PRIMA PER TRADEA UTAMA MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK,” vol. XI, no. 2, 2021. [20] Y. A. Lesnussa and E. Risamasu, “Aplikasi Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Tingkat Pengangguran Terbuka (TPT) Di Provinsi Maluku,” Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam, vol. 17, no. 2, p. 89, 2020, doi: 10.31851/sainmatika.v17i2.3434. [21] E. Y. Sari, K. Kusrini, and A. Sunyoto, “Analisis Akurasi Jaringan Syaraf Tiruan Dengan Backpropagation Untuk Prediksi Mahasiswa Dropout,” Creat. Inf. Technol. J., vol. 6, no. 2, p. 85, 2021, doi: 10.24076/citec.2019v6i2.235. [22] N. F. Hasan, K. Kusrini, and H. Al Fatta, “Analisis Arsitektur Jaringan Syaraf Tiruan Untuk Peramalan Penjualan Air Minum Dalam Kemasan,” J. Rekayasa Teknol. Inf., vol. 3, no. 1, p. 1, 2019, doi: 10.30872/jurti.v3i1.2290. [23] I. Sofian, “Metode Peramalan Jaringan Saraf Tiruan Menggunakan Algoritma Backpropagatin (Studi Kasus Peramalan Curah Hujan Kota Palembang),” J. Mipa, vol. 40, no. 2, pp. 87–91, 2017. [24] E. P. Cynthia and E. Ismanto, “JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI KETERSEDIAAN KOMODITI PANGAN PROVINSI RIAU,” RABIT J. Teknol. dan Sist. Inf. Univrab, vol. 2, no. 2, pp. 83–98, 2017. [25] R. Dharwal, “Applications of Artificial Neural Networks: A Review,” Indian J. Sci. Technol., vol. 9, no. 1, pp. 1–8, 2016, doi: 10.17485/ijst/2016/v9i47/106807. [26] R. R. Asaad and R. I. Ali, “Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks,” Acad. J. Nawroz Univ., vol. 8, no. 4, p. 216, 2019, doi: 10.25007/ajnu.v8n4a464. [27] A. Ovidius, Gunadi Widi Nurcahyo, Sumijan, and Roni Salambue, “Akurasi dalam Mengidentifikasi Citra Anggrek Menggunakan Backpropagation Artificial Neural Network,” J. Inf. dan Teknol., vol. 3, pp. 95–102, 2021, doi: 10.37034/jidt.v3i3.115. |
Published
2022-09-05
Section
Articles
How to Cite
Prasiwiningrum, E. (2022). Pengendalian Persediaan Darah untuk Pasien dengan Hemoglobin Rendah Menggunakan Metode Backpropagation . Jurnal Informatika Ekonomi Bisnis, 4(3), 113-118. https://doi.org/10.37034/infeb.v4i3.153
This work is licensed under a Creative Commons Attribution 4.0 International License. |