Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA)
Keywords:
Social Network Analysis, Support Vector Machine, Text Mining, Twitter, Online Loan
AbstractOnline loans are growing rapidly in Indonesia in the last two years. This is because the online loan administration requirements are easier compared to bank financial service loans. Online loans are financial services that provide online-based services. Along with the development of online loans, many illegal online loans have sprung up and often commit violations, such as leaking customer personal information and abusing data by carrying out extreme actions such as terrorizing customers who make online loan transactions. This certainly gets a lot of comments from the public, especially on social media twitter. This study aims to conduct a sentiment analysis to see what phenomena are happening among the public regarding online loans. The data used are tweets or retweets from Twitter social media with #pinjamanonline #pinjol. Twitter social media was chosen because an incident can become a phenomenon if it gets a lot of attention from the community, especially on Twitter social media. In this study, using text mining techniques by applying the Support Vector Machine algorithm to classify sentiments on twitter users regarding online loans. This study also looks at the interactions that occur on social media Twitter using social network analysis (SNA). the results of research and testing of the Support Vector Machine method to classify online loans with an Accuracy value level of 86.6%, with a positive precision of 86%, neutral of 1.00% and negative of 87%, positive recall of 90%, neutral 87% and negative of 26 % and positive F1-Score of 88% neutral 42% and negative 86%. Then at the Social Network Analysis stage there is the most influential account, namely influencer @alvinline21 with 1402 nodes. Downloads
Download data is not yet available.
References
[1] Akyuwen, R., Nanere, M., & Ratten, V. (2022). Technology entrepreneurship: Fintech lending in Indonesia. In Entrepreneurial innovation (pp. 151-176). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-4795-6_14
[2] Syarvina, W., & Sudiarti, S. (2022). Analisa Risiko Pinjaman Online Ilegal Dalam Praktik Teknologi Finansial. Jurnal Riset Akuntansi dan Bisnis, 22(1), 18-28. DOI: http://dx.doi.org/10.30596%2F8939 [3] Wahyuni, R. A. E., & Turisno, B. E. (2019). Praktik Finansial Teknologi Ilegal Dalam Bentuk Pinjaman Online Ditinjau Dari Etika Bisnis. Jurnal Pembangunan Hukum Indonesia, 1(3), 379-391. DOI: https://doi.org/10.14710/jphi.v1i3.379-391 [4] Sopiyanti, R. (2022). Peraturan Otoritas Jasa Keuangan (Ojk) Terhadap Perlindungan Konsumen Atas Data Pribadi Dalam Transaksi Peer To Peer Lending (P2p Lending) Berbasis Teknologi Informasi (Doctoral Dissertation, Universitas Siliwangi. DOI: https://doi.org/10.31289/jiph.v8i1.512 [5] Marsden, G., & Docherty, I. (2021). Mega-disruptions and policy change: Lessons from the mobility sector in response to the Covid-19 pandemic in the UK. Transport Policy, 110, 86-97. DOI: https://doi.org/10.1016/j.tranpol.2021.05.015 [6] Levidow, L. (2022). Green New Deals: What Shapes Green and Deal Capitalism Nature Socialism, 1-22. DOI: https://doi.org/10.1080/10455752.2022.2062675 [7] Sidiq, V. A. R. A., & Setiawan, H. (2022). Analisis Framing Pemberitaan Kasus Pinjaman Online Warga Negara China pada Media Online CNNIndonesia. com dan Nasional Tempo. com. Edukatif: Jurnal Ilmu Pendidikan, 4(1), 851-861. DOI: https://doi.org/10.31004/edukatif.v4i1.1935 [8] Bourequat, W., & Mourad, H. (2021). Sentiment analysis approach for analyzing iPhone release using support vector machine. International Journal of Advances in Data and Information Systems, 2(1), 36-44. DOI: https://doi.org/10.25008/ijadis.v2i1.1216 [9] Fitriyah, N., Warsito, B., & Di Asih, I. M. (2020). Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM). Jurnal Gaussian, 9(3), 376-390. DOI: https://doi.org/10.14710/j.gauss.v9i3.28932 [10] Salsabila, S. M., Murtopo, A. A., & Fadhilah, N. (2022). Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier. Jurnal Minfo Polgan, 11(2), 30-35. DOI: https://doi.org/10.33395/jmpv11i2.11640 [11] Gunawan, R., Septiadi, R., Wenando, F. A., & Mukhtar, H. (2022). K-Nearest Neighbor (KNN) untuk Menganalisis Sentimen terhadap Kebijakan Merdeka Belajar Kampus Merdeka pada Komentar Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 3(2), 152-158. DOI: https://doi.org/10.37859/coscitech.v3i2.3841 [12] Denny, Y. R., Permata, E., & Assaat, L. D. (2022). Classification of diseases of banana plant fusarium wilted banana leaf using support vector machine. Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika, 8(1). DOI: http://dx.doi.org/10.30870/gravity.v8i1.15893 [13] Alhaq, Z., Mustopa, A., Mulyatun, S., & Santoso, J. D. (2021). Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter. Journal Of Information System Management (Joism), 3(1), 16-21. DOI: https://doi.org/10.24076/joism.2021v3i2.558 [14] Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto). Jurnal Informatika dan Rekayasa Elektronik, 2(2), 43-51. DOI: https://doi.org/10.36595/jire.v2i2.117 [15] Anam, M. K., Lestari, T. P., Firdaus, M. B., & Fadli, S. (2021). Analisis Kesiapan Masyarakat Pada Penerapan Smart City di Sosial Media Menggunakan SNA. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 69-81. DOI: https://doi.org/10.29207/resti.v5i1.2742 [16] Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm. Jurnal Data Mining Dan Sistem Informasi, 2(1), 31-37. DOI: https://doi.org/10.33365/jdmsi.v2i1.1021 [17] Rahman, O. H., Abdillah, G., & Komarudin, A. (2021). Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(1), 17-23. DOI: https://doi.org/10.29207/resti.v5i1.2700 [18] Saragih, P. S., Witarsyah, D., Hamami, F., & Machado, J. M. (2021, October). Sentiment Analysis of Social Media Twitter with Case of Large Scale Social Restriction in Jakarta using Support Vector Machine Algorithm. In 2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICADEIS52521.2021.9701961 [19] Powell, K. R., Popescu, M., & Alexander, G. L. (2021). Examining Social Networks in Text Messages About Nursing Home Resident Health Status. Journal of Gerontological Nursing, 47(7), 16-22. DOI: https://doi.org/10.3928/00989134-20210604-02 [20] Taira, K., & Nair, A. G. (2022). Network-based analysis of fluid flows: Progress and outlook. Progress in Aerospace Sciences, 131, 100823. DOI: https://doi.org/10.1016/j.paerosci.2022.100823 [21] Oroh, A. J., Bandung, Y., & Zagi, L. M. (2021, April). Detection of the Key Actor of Issues Spreading Based on Social Network Analysis in Twitter Social Media. In 2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob) (pp. 206-212). IEEE. DOI: https://doi.org/10.1109/APWiMob51111.2021.9435268 [22] Lowphansirikul, L., Polpanumas, C., Rutherford, A. T., & Nutanong, S. (2022). A large english–thai parallel corpus from the web and machine-generated text. Language Resources and Evaluation, 56(2), 477-499. DOI: https://doi.org/10.1007/s10579-021-09536-6 [23] Yunanda, G., Nurjanah, D., & Meliana, S. (2022). Recommendation System from Microsoft News Data using TF-IDF and Cosine Similarity Methods. Building of Informatics, Technology and Science (BITS), 4(1), 277-284. DOI: https://doi.org/10.47065/bits.v4i1.1670 [24] Hacquard, A., & Verna, D. (2021, May). A Corpus Processing and Analysis Pipeline for Quickref. In 14th European Lisp Symposium. DOI: https://doi.org/10.5281/zenodo.4714443 [25] Kochhar, T. S., & Goyal, G. (2022). Design and Implementation of Stop Words Removal Method for Punjabi Language Using Finite Automata. In Advances in Data Computing, Communication and Security (pp. 89-98). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-8403-6_8 [26] Hutajulu, T. A., Priyadi, Y., & Gandhi, A. (2022, June). Text Data Processing in Requirement Specifications as a Reference for Similarities Between Use Case Diagrams and Use Case Descriptions for Smart Sleeping Lamp Application Documents. In 2022 IEEE World AI IoT Congress (AIIoT) (pp. 665-671). IEEE. DOI: https://doi.org/10.1109/AIIoT54504.2022.9817197 [27] Septianingrum, F., Jaman, J. H., & Enri, U. (2021). Analisis Sentimen Pada Isu Vaksin Covid-19 di Indonesia dengan Metode Naive Bayes Classifier. Jurnal Media Informatika Budidarma, 5(4), 1431-1437. DOI: http://dx.doi.org/10.30865/mib.v5i4.3260 [28] Prabowo, N. A., Pujiarto, B., Wijaya, F. S., Gita, L., & Alfandy, D. (2021). Social network analysis for user interaction analysis on social media regarding e-commerce business. International Journal of Informatics and Information Systems, 4(2), 95-102. DOI: https://doi.org/10.47738/ijiis |
Published
2022-08-30
Section
Articles
How to Cite
Lestari, T. P. (2022). Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA). Jurnal Informatika Ekonomi Bisnis, 4(3), 65-71. https://doi.org/10.37034/infeb.v4i3.146
This work is licensed under a Creative Commons Attribution 4.0 International License. |