Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN)
Keywords:
Palm Oil, Quality, Seeds, Image, Convolutional Neural Network (CNN)
AbstractPalm oil is one of the plantation commodities that has a strategic role in Indonesia's economic development. Lack of employee knowledge about the types of diseases in oil palm seedlings resulted in errors in handling them. In the selection of seeds to be planted in plantations, sick will cause unstable palm growth and even die. This study aims to find the best solution according to experts when the emergence of pests or diseases is identified through the pattern and color of the leaves. The data used in this study comes from image data of PT.Gatipura Mulya which is conducting a nursery as many as 612 images of oil palm seedlings and can be divided into 4 classes. The method that can be used in this identification is Convolutional Neural Network (CNN) which can study objects in image patterns. The result of this research is that the accuracy of image recognition is very good. So that this research can be recommended in the introduction of oil palm image patterns. Downloads
Download data is not yet available.
References
[1] Siahaan, M. Y. R., & Darianto, D. (2020). Karakteristik Koefisien Serap Suara Material Concrete Foam Dicampur Serat Tandan Kosong Kelapa Sawit (TKKS) Dengan Metode Impedance Tube. Journal of mechanical engineering manufactures materials and energy, 4(1), 85-93. Doi : https://doi.org/10.31289/jmemme.v4i1.3823
[2] Solehudin, D., & Suswanto, I. (2012). Status Penyakit Bercak Coklat Pada Pembibitan Kelapa Sawit Di Kabupaten Sanggau. Perkebunan Dan Lahan Tropika, 2 (1), 1-6. Doi : http://dx.doi.org/10.26418/plt.v2i1.1955 [3] Dani, D. R., Purba, W., Solin, S. D., & Wulandari, P. (2020). Penerapan Algoritma Certainty Faktor dalam Mendiagnosa Penyakit Tanaman Kelapa Sawit Menggunakan Fordward Chaining Berbasis Web. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 5(1), 60-65. Doi : 10.33395/remik.v5i1.10642 [4] Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit Dengan Metode Deep Neural Network (DNN). Jurnal media informatika budidarma, 4(4), 1206-1215. Doi : http://dx.doi.org/10.30865/mib.v4i4.2518 [5] Widians, J. A., Puspitasari, N., & Putri, A. A. M. (2020). Penerapan Teorema Bayes Dalam Sistem Pakar Anggrek Hitam. Inform. Mulawarman J. Ilm. Ilmu Komput, 15(2), 75. Doi : http://dx.doi.org/10.30872/jim.v15i2.4604 [6] Khairani, Y. C., & Nurcahyo, G. W. (2021). Sistem Pakar dalam Mengidentifikasi Tingkat Keparahan Penyakit pada Tanaman Kelapa Sawit Menggunakan Framework Codeigniter. Jurnal Informasi Dan Teknologi, 53-57. Doi : https://doi.org/10.37034/jidt.v3i1.113 [7] Afandi, A., Rustam, R., & Supriyanto, S. (2020). Sistem Pakar Identifikasi Penyakit Kelapa Sawit Dengan Metode Fuzzy Mamdani Dan Certainty Factor Studi Kasus:“Kelompok Tani Desa Banjar Kertarahayu”. Jurnal Informasi dan Komputer, 8(2), 1-12. Doi : https://doi.org/10.35959/jik.v8i2.179 [8] Meniati, L., Gaol, N. Y. L., & Santoso, I. (2022). Sistem Pakar Mendiagnosa Penyakit Tanaman Kakao Menggunakan Metode Certainty Factor. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 5(1), 83-94. Doi : https://doi.org/10.33365/jdmsi.v1i1.798 [9] Pambudi, A. R. (2020). Deteksi Keaslian Uang Kertas Berdasarkan Watermark Dengan Pengolahan Citra Digital. Jurnal Informatika Polinema, 6(4), 69-74. Doi : https://doi.org/10.33795/jip.v6i4.407 [10] Naufal, M. F., Huda, S., Budilaksono, A., Yustisia, W. A., Arius, A. A., Miranti, F. A., & Prayoga, F. A. T. (2021). Klasifikasi Citra Game Batu Kertas Gunting Menggunakan Convolutional Neural Network. Techno. Com: Jurnal Teknologi Informasi, 20(1), 166-174. Doi : https://doi.org/10.33633/tc.v20i1.4273 [11] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A Survey Of The Recent Architectures Of Deep Convolutional Neural Networks. Artificial Intelligence Review, 53(8), 5455-5516. Doi : https://doi.org/10.1007/s10462-020-09825-6 [12] I. Gogul and V. S. Kumar, “Flower species recognition system using convolution neural networks and transfer learning,” 2017 4th Int. Conf. Signal Process. Commun. Networking, ICSCN 2017, no. March, 2017, doi: 10.1109/ICSCN.2017.8085675. [13] Khoiruddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network. Journal Of Dinda: Data Science, Information Technology, And Data Analytics, 2(1), 37-45. Doi : https://doi.org/10.20895/dinda.v2i1.341 [14] Nuryana, A., Pawito, P., & Utari, P. (2019). Pengantar Metode Penelitian Kepada Suatu Pengertian Yang Mendalam Mengenai Konsep Fenomenologi. Ensains Journal, 2(1), 19-24. Doi : https://doi.org/10.31848/ensains.v2i1.148 [15] Andika, L. A., Pratiwi, H., & Handajani, S. S. (2019). Klasifikasi penyakit pneumonia menggunakan metode convolutional neural network dengan optimasi adaptive momentum. Indonesian Journal of Statistics and Its Applications, 3(3), 331-340. Doi: https://doi.org/10.29244/ijsa.v3i3.560 [16] Falakhi, B., Achmal, E. F., Rizaldi, M., Rafi'Athallah, R. R., & Yudistira, N. (2022). Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning. Jurnal Ilmu Komputer dan Agri-Informatika, 9(1), 70-78. Doi : https://doi.org/10.29244/jika.9.1.70-78 [17] Andika, L. A., Pratiwi, H., & Handajani, S. S. (2019). Klasifikasi penyakit pneumonia menggunakan metode convolutional neural network dengan optimasi adaptive momentum. Indonesian Journal of Statistics and Its Applications, 3(3), 331-340. Doi : https://doi.org/10.29244/ijsa.v3i3.560 [18] Kurniawan, A. A., & Mustikasari, M. (2021). Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia. Jurnal Informatika Universitas Pamulang, 5(4), 544-552. Doi : http://dx.doi.org/10.32493/informatika.v5i4.6760 [19] Prastowo, E. Y. (2021). Pengenalan Jenis Kayu Berdasarkan Citra Makroskopik Menggunakan Metode Convolutional Neural Network. Jurnal Teknik Informatika Dan Sistem Informasi, 7(2). Doi : https://doi.org/10.28932/jutisi.v7i2.3706 [20] Latha, R. S., Sreekanth, G. R., Suganthe, R. C., Rajadevi, R., Karthikeyan, S., Kanivel, S., & Inbaraj, B. (2021, January). Automatic detection of tea leaf diseases using deep convolution neural network. In 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-6). IEEE. Doi : 10.1109/ICCCI50826.2021.9402225 |
Published
2022-08-30
Issue
Section
Articles
How to Cite
Oktafanda, E. (2022). Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN) . Jurnal Informatika Ekonomi Bisnis, 4(3), 72-77. https://doi.org/10.37034/infeb.v4i3.143
![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |