Perbandingan Metode Klasifikasi dalam Memprediksi Penyakit Ginjal Kronis
| 
							
				 
				
										Keywords:
				
				
																		Chronic Kidney, 													Decision Tree C4.5, 													Naïve Bayes, 													ROC Curve, 													RapidMiner															
			 
			
										AbstractChronic Kidney Disease (CKD) is a global health issue with an increasing prevalence that poses a significant economic burden on healthcare systems. Early detection of CKD is crucial to provide proper treatment before the disease progresses to end-stage renal failure. With technological advancements, machine learning methods have been widely utilized to support medical diagnosis with greater speed and accuracy. This study aims to compare the performance of two popular classification algorithms, Decision Tree C4.5 and Naïve Bayes, in predicting CKD using a public dataset from the UCI Machine Learning Repository consisting of 400 patient records with 24 clinical attributes. The research process involved systematic preprocessing steps, including handling missing values, transforming categorical data into numerical form, and selecting relevant attributes. Model evaluation was conducted using 10-Fold Cross Validation with performance metrics such as accuracy, precision, recall, Area Under the Curve (AUC), and statistical T-Test. The results show that Decision Tree C4.5 achieved an accuracy of 93.00%, precision of 84.27%, recall of 100%, and an AUC of 0.944, while Naïve Bayes obtained an accuracy of 93.50%, precision of 85.23%, recall of 100%, and an AUC of 0.948. Although the performance differences between both algorithms are relatively small and statistically insignificant, Naïve Bayes demonstrated slightly better results in terms of accuracy and AUC, while Decision Tree C4.5 offers advantages in interpretability through its classification rules. In conclusion, both algorithms are effective for early CKD diagnosis, and the choice may depend on practical needs, whether emphasizing interpretability or computational efficiency. This study contributes to the development of more accurate and efficient clinical decision support systems for improving healthcare services in CKD management.Downloads
			Download data is not yet available.
		 
	ReferencesPrasetya, D. C. T., Pateda, S. M., Ihsan, M., Yusuf, M. N. S., & Antu, Y. (2024). Karakteristik dan Komorbiditas Pasien Gagal Ginjal Kronis. Jurnal Keperawatan Tropis Papua, 7(2), 147–154. DOI: https://doi.org/10.47539/jktp.v7i2.415 . Rohmaniah, F. A., & Sunarno, R. D. (2022). Efikasi Diri untuk Meningkatkan Kualitas Hidup Pasien Gagal Ginjal Kronik yang Menjalani Hemodialisis. Jurnal Ilmu Keperawatan dan Kebidanan, 13(1), 164–175. DOI: https://doi.org/10.26751/jikk.v13i1.1305 . Gambaran Klaim Pelayanan Dialisis di Rumah Sakit dan Rekomendasi Kebijakan di Level Daerah: Studi Kasus Kota Pematangsiantar. (2024). Jurnal Ekonomi Kesehatan Indonesia, 9(1). DOI: https://doi.org/10.7454/eki.v9i1.1123 . Dharmarathne, G., Bogahawaththa, M., McAfee, M., Rathnayake, U., & Meddage, D. P. P. (2024). On the Diagnosis of Chronic Kidney Disease Using a Machine Learning-Based Interface with Explainable Artificial Intelligence. Intelligent Systems with Applications, 22, 200397. DOI: https://doi.org/10.1016/j.iswa.2024.200397 . Nuresa Qodri, K., Rausan Fikri, M., & Ardi, L. (2025). Analytical Prediction for Chronic Kidney Disease: A Comparison of Machine Learning Methods. JKTI Jurnal Keilmuan Teknologi Informasi, 1(1), 15–22. DOI: https://doi.org/10.61902/jkti.v1i1.1686 . Tanwar, S. (2024). Machine Learning. In Computational Science and Its Applications (pp. 13–42). Apple Academic Press. DOI: https://doi.org/10.1201/9781003347484-2 . Ikhromr, F. N., Sugiyarto, I., Faddillah, U., & Sudarsono, B. (2023). Implementasi Data Mining untuk Memprediksi Penyakit Diabetes Menggunakan Algoritma Naives Bayes dan K-Nearest Neighbor. INTECOMS: Journal of Information Technology and Computer Science, 6(1), 416–428. DOI: https://doi.org/10.31539/intecoms.v6i1.5916 . Hana, F. M. (2020). Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 4(1), 32–39. DOI: https://doi.org/10.47970/siskom-kb.v4i1.173 . Jupri, M., & Sarno, R. (2018). Taxpayer Compliance Classification Using C4.5, SVM, KNN, Naive Bayes and MLP. 2018 International Conference on Information and Communications Technology (ICOIACT), 297–303. DOI: https://doi.org/10.1109/ICOIACT.2018.8350710 . Mahareek, E. A., Desuky, A. S., & El-Zhni, H. A. (2021). Simulated Annealing for SVM Parameters Optimization in Student’s Performance Prediction. Bulletin of Electrical Engineering and Informatics, 10(3), 1211–1219. DOI: https://doi.org/10.11591/eei.v10i3.2855 . Indrayani, U. D., & Utami, K. D. (2022). Deteksi Dini Penyakit Ginjal Kronis pada Pasien Hipertensi dan Diabetes Melitus di Puskesmas Srondol. Jurnal ABDIMAS-KU: Jurnal Pengabdian Masyarakat Kedokteran, 1(1), 34. DOI: https://doi.org/10.30659/abdimasku.1.1.34-38 . Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640. DOI: https://doi.org/10.30865/mib.v5i2.2937 . Maskoen, T. T., & Purnama, D. (2018). Area Under the Curve dan Akurasi Cystatin C untuk Diagnosis Acute Kidney Injury pada Pasien Politrauma. Majalah Kedokteran Bandung, 50(4), 259–264. DOI: https://doi.org/10.15395/mkb.v50n4.1342 . Dionisius Surya Ernawan. (2022). Tanggung Gugat Dokter Akibat Kesalahan Diagnosa terhadap Pasien dalam Layanan Kesehatan Telemedicine. Jurist-Diction, 5(5), 1711–1724. DOI: https://doi.org/10.20473/jd.v5i5.38434 . Qori’ah, A. A., & Fatah, Z. (2024). Implementasi Prediksi Penyakit Ginjal Kronis dengan Menggunakan Metode Decision Tree. JUSIFOR : Jurnal Sistem Informasi dan Informatika, 3(2), 180–186. DOI: https://doi.org/10.70609/jusifor.v3i2.5803 Ali, S. I., Jung, S. W., Bilal, H. S. M., Lee, S.-H., Hussain, J., Afzal, M., Hussain, M., Ali, T., Chung, T., & Lee, S. (2021). Clinical Decision Support System Based on Hybrid Knowledge Modeling: A Case Study of Chronic Kidney Disease-Mineral and Bone Disorder Treatment. International Journal of Environmental Research and Public Health, 19(1), 226. DOI: https://doi.org/10.3390/ijerph19010226 . Aulia Fitri, L., & Baita, A. (2025). Optimization of Decision Tree Algorithm for Chronic Kidney Disease Classification Based on Particle Swarm Optimization (PSO). Journal of Applied Informatics and Computing, 9(1), 178–186. DOI: https://doi.org/10.30871/jaic.v9i1.8940 . Arifin, T., & Ariesta, D. (2019). Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization. Jurnal Tekno Insentif, 13(1), 26–30. DOI: https://doi.org/10.36787/jti.v13i1.97 . Islam, Md. A., Majumder, Md. Z. H., & Hussein, Md. A. (2023). Chronic Kidney Disease Prediction Based on Machine Learning Algorithms. Journal of Pathology Informatics, 14, 100189. DOI: https://doi.org/10.1016/j.jpi.2023.100189 . Venkatesan, V. K., Ramakrishna, M. T., Izonin, I., Tkachenko, R., & Havryliuk, M. (2023). Efficient Data Preprocessing with Ensemble Machine Learning Technique for the Early Detection of Chronic Kidney Disease. Applied Sciences, 13(5), 2885. DOI: https://doi.org/10.3390/app13052885 . Panggabean, M. S. (2022). Nutrisi Pasien Anak dengan Chronic Kidney Disease (CKD). Cermin Dunia Kedokteran, 49(6), 320–326. DOI: https://doi.org/10.55175/cdk.v49i6.240 .  | 
    
		
						
										
					
						
							
				 
						Published
					 
					
						2025-09-30
					 
				
							Section
						 
						
							Articles
						 
					
							How to Cite
						 
						Ermanto, & Surojudin, N. (2025). Perbandingan Metode Klasifikasi dalam Memprediksi Penyakit Ginjal Kronis. Jurnal Informatika Ekonomi Bisnis, 7(3), 715-723. https://doi.org/10.37034/infeb.v7i3.1263 
![]() This work is licensed under a Creative Commons Attribution 4.0 International License.  | 
			
							
																	
									




 
 












