Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Penerapan Data Mining dengan Algoritma C4.5 dan K-nearest Neighbor untuk Prediksi Penjualan Bahan Bangunan Terlaris

  • Nurhadi Surojudin
    Universitas Pelita Bangsa

  • Muhtajuddin Danny
    Universitas Pelita Bangsa


DOI: https://doi.org/10.37034/infeb.v7i3.1241
Keywords: Sales Prediction, Building Materials, Data Mining, K-Nearest Neighbor, Rapidminer

Abstract

The main problem faced by PT. Surya Kapuas Perkasa is the difficulty in accurately determining the types of building materials with the highest sales levels. Currently, stock determination still relies on manual estimates based on previous sales trends, which are prone to errors and inaccuracies. As a result, the company often faces the risk of overstocking products that are less in demand, or understocking products that are actually in high demand. This condition can impact the sales process, increase storage costs, and reduce customer satisfaction. To overcome this problem, a method is needed that can predict the sales of the best-selling building materials more objectively and based on historical data. This prediction will utilize sales data from the past three years by applying data mining classification techniques using the C4.5 algorithm and K-Nearest Neighbor (K-NN) through the RapidMiner application. With this approach, the company can accurately identify the types of building materials that are most in demand in the market, allowing for more precise and efficient stock management. Based on the research results, four types of building materials were found to be the best-selling out of a total of 16 types analyzed: Light Steel, Brick, Iron, and Cement, with a prediction accuracy rate of 87.16%.

Downloads

Download data is not yet available.

References

Everaldo, D., Achmadi, S., & Pranoto, Y. A. (2021). Sistem Informasi Kebutuhan Bahan Pembangunan Rumah Berbasis Website (Studi Kasus : PT. Taniya Multi Properti). JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 720–727. DOI: https://doi.org/10.36040/jati.v5i2.3728 .

Banjarnahor, J., Reinaldo, E., & Indra, E. (2020). Penerapan Data Mining dengan Algoritma ID3 untuk Memprediksi Penjualan ( Studi Kasus : PT. Tata Warna Cipta Perkasa ). Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), 3(2), 1–6. DOI: https://doi.org/10.34012/jusikom.v3i2.836 .

Anggrawan, A., Hairani, H., & Azmi, N. (2022). Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear. Jurnal Bumigora Information Technology (BITe), 4(2), 123–132. DOI: https://doi.org/10.30812/bite.v4i2.2416 .

Firmansyah, M. A., Panji Sasmito, A., & Zulfia Zahro’, H. (2021). Aplikasi Forecasting Penjualan Bahan Bangunan Menggunakan Metode Trend Moment (Studi Kasus di UD. Hasil Bumi). JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 526–533. DOI: https://doi.org/10.36040/jati.v5i2.3759 .

Prastiwi, H., Jeny Pricilia, & Errissya Rasywir. (2022). Implementasi Data Mining untuk Menentuksn Persediaan Stok Barang di Mini Market Menggunakan Metode K-Means Clustering. Jurnal Informatika dan Rekayasa Komputer(JAKAKOM), 2(1), 141–148. DOI: https://doi.org/10.33998/jakakom.2022.2.1.34 .

Fathurrozi, A., Masya, F., & Sugiyatno. (2023). Implementasi Algoritma Apriori untuk Prediksi Transaksi Penjualan Produk pada Aplikasi Point of Sales. Technomedia Journal, 8(2), 70–81. DOI: https://doi.org/10.33050/tmj.v8i2.2004 .

Gultom, M. M., & Maryam. (2020). Sistem Informasi Penjualan Material Bangunan pada Toko Bangunan Berkah. Jurnal Teknik Informatika (Jutif), 1(2), 79–86. DOI: https://doi.org/10.20884/1.jutif.2020.1.2.19 .

Zulkifli, Asmawati.S, & Arnita Irianti. (2022). Penerapan Algoritma Naive Bayes dalam Memprediksi Persediaan Bahan Mebel (Studi Kasus Mebel Usaha Bersama Palipi Soreang). Journal of Computer and Information System (J-CIS), 5(1), 57–64. DOI: https://doi.org/10.31605/jcis.v5i1.1360 .

Firmansyah, F., & Nurdiawan, O. (2023). Penerapan Data Mining Menggunakan Algoritma Frequent Pattern - Growth untuk Menentukan Pola Pembelian Produk Chemicals. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 547–551. DOI: https://doi.org/10.36040/jati.v7i1.6371 .

Soleh, P., Tholib, A., & Hidayat, M. N. F. (2022). Penerapan Data Mining untuk Analisa Pola Pembelian Produk Menggunakan Algoritma Frequent Pattern – Growth. Rekayasa, 14(3), 456–460. DOI: https://doi.org/10.21107/rekayasa.v14i3.11365 .

Gustipartsani, K., Rahaningsih, N., Danar Dana, R., & Yulia Mustafa, I. (2024). Data Mining Clustering Menggunakan Algoritma K-Means pada Data Kunjungan Wisatawan di Kabupaten Karawang. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3595–3601. DOI: https://doi.org/10.36040/jati.v7i6.8282 .

Setianingrum, A., Hindayanti, A., Cahya, D. M., & Purnia, D. S. (2021). Perbandingan Metode Algoritma K-NN & Metode Algoritma C45 pada Analisa Kredit Macet (Studi Kasus PT Tungmung Textil Bintan). EVOLUSI : Jurnal Sains Dan Manajemen, 9(2). DOI: https://doi.org/10.31294/evolusi.v9i2.11166 .

Ridla, M. A., Baijuri, A., & Ahmad, U. (2023). Implementasi Data Mining terhadap Pola Penjualan Bahan Material Bangunan di TB. Murah Rejeki Menggunakan Algoritma Apriori. Jurnal SIMADA (Sistem Informasi Dan Manajemen Basis Data), 6(2), 92–103. DOI: https://doi.org/10.30873/simada.v6i2.3800 .

Tukino, T. (2019). Penerapan Algoritma C4.5 Untuk Memprediksi Keuntungan pada PT SMOE Indonesia. JURNAL SISTEM INFORMASI BISNIS, 9(1), 39. DOI: https://doi.org/10.21456/vol9iss1pp39-46 .

Arifin, N. B. A. B., & Asmianto, A. (2023). Sistem Prediksi Penjualan Menggunakan Kombinasi Metode Monte Carlo dan Decision Tree Berbasis Website. MATHunesa: Jurnal Ilmiah Matematika, 11(2), 274–286. DOI: https://doi.org/10.26740/mathunesa.v11n2.p274-286 .

Mujilahwati, S., & Windasari, L. D. (2024). Implementasi Metode k-Nearest Neighbor (k-NN) untuk Memprediksi Penjualan Buah di Indonesia berbasis Website. Seminar Nasional Teknologi & Sains, 3(1), 7–14. DOI: https://doi.org/10.29407/stains.v3i1.4077 .

Oktaviana Isbirotin, Wiwiet Herulambang, Rahmawati Febrifyaning Tias, Rangsang, & Ahmadi. (2023). Prediction of Skincare Sales Turnover Using the Support Vector Method at the Widya Msglow Sidoarjo Company. JEECS (Journal of Electrical Engineering and Computer Sciences), 8(2), 181–190. DOI: https://doi.org/10.54732/jeecs.v8i2.10 .

Rahmah, S., Witanti, W., & Sabrina, P. N. (2023). Prediksi Penjualan Obat Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS). J I M P - Jurnal Informatika Merdeka Pasuruan, 7(3), 109. DOI: https://doi.org/10.51213/jimp.v7i3.733 .

Nasrullah, A. H. (2018). Penerapan Metode C4.5 untuk Klasifikasi Mahasiswa Berpotensi Drop Out. ILKOM Jurnal Ilmiah, 10(2), 244–250. DOI: https://doi.org/10.33096/ilkom.v10i2.300.244-250 .

Wariyanti Nugroho Putri, Made Hanindia Prami Swari, & Retno Mumpuni. (2023). Penerapan Metode Regresi Linear untuk Prediksi Penjualan Suku Cadang. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(4), 679–685. DOI: https://doi.org/10.51401/jinteks.v5i4.3462 .

Florensa Nainggolan, N. C., Boy, A. F., & Elfitriani, E. (2023). Penerapan Data Mining Untuk Prediksi Export Penjualan Produk Kerajinan Rotan Menggunakan Metode Regresi Linear Berganda. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(5), 743. DOI: https://doi.org/10.53513/jursi.v2i5.6779 .

Novita Indriyani, Heru Satria Tambunan, & Zulia Almaida Siregar. (2022). Analisis Faktor Kepuasan Konsumen Terhadap Produk Roti Pinkan Bakery & Cake dengan Algoritma C4.5. Jural Riset Rumpun Ilmu Teknik, 1(2), 76–90. DOI: https://doi.org/10.55606/jurritek.v1i2.413 .

Download
Published
2025-09-30
Issue
Vol. 7, No. 3 (September 2025)
Section
Articles
How to Cite
Surojudin, N., & Danny, M. (2025). Penerapan Data Mining dengan Algoritma C4.5 dan K-nearest Neighbor untuk Prediksi Penjualan Bahan Bangunan Terlaris. Jurnal Informatika Ekonomi Bisnis, 7(3), 672-679. https://doi.org/10.37034/infeb.v7i3.1241
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).