The Impact of Artificial Intelligence Implementation on Business Ethics in Corporate Decision-Making
|
Keywords:
Artificial Intelligence, Business Ethics, Corporate Decision-Making, Algorithmic Accountability, Ethical AI
AbstractThe integration of artificial intelligence into corporate decision-making processes has introduced complex ethical challenges that demand urgent scholarly and practical attention. This study explores how AI implementation influences business ethics across five key dimensions: algorithmic bias, transparency, responsibility diffusion, privacy, and human autonomy. Employing a qualitative research design, data were collected through in-depth interviews with 25 executives and ethics officers from multinational corporations across diverse sectors. Thematic analysis revealed widespread concerns about the opacity of AI systems, ethical disengagement, and the absence of clear accountability structures. Although some organizations have begun adopting ethical AI governance frameworks, the effectiveness of these measures varies significantly, with many efforts remaining reactive and fragmented. The findings highlight a critical gap between ethical aspirations and organizational realities, emphasizing the need for systemic reforms that embed ethics into the design, deployment, and oversight of AI technologies. This study contributes to the growing body of literature on AI ethics by offering empirical insights and actionable implications for policy, leadership, and future research.Downloads
Download data is not yet available.
ReferencesFloridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People-An Ethical Framework for A Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. DOI: https://doi.org/10.1007/s11023-018-9482-5 . Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The Ethics of Algorithms: Mapping the Debate. Big Data & Society, 3(2). DOI: https://doi.org/10.1177/2053951716679679 . Ajunwa, I. (2020). The Paradox of Automation as Anti-Bias Intervention. Cardozo Law Review, 41(4), 1671–1742. DOI: https://doi.org/10.2139/ssrn.2747236 . Ananny, M., & Crawford, K. (2018). Seeing Without Knowing: Limitations of The Transparency Ideal and Its Application to Algorithmic Accountability. New Media & Society, 20(3), 973–989. DOI: https://doi.org/10.1177/1461444816676645 . Dignum, V. (2019). Responsible Artificial Intelligence: How to Develop and Use AI In A Responsible Way. Springer. DOI: https://doi.org/10.1007/978-3-030-30371-6 . Cowls, J., & Floridi, L. (2018). Prolegomena to A White Paper On An Ethical Framework for A Good AI Society. Minds and Machines, 28(4), 689–707. DOI: https://doi.org/10.1007/s11023-018-9482-5 . Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness And Machine Learning: Limitations and Opportunities. DOI: https://doi.org/10.48550/arXiv.1908.09635 . Jobin, A., Ienca, M., & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389–399. DOI: https://doi.org/10.1038/s42256-019-0088-2 . Lepri, B., Oliver, N., Letouzé, E., Pentland, A., & Vinck, P. (2018). Fair, Transparent, and Accountable Algorithmic Decision-Making Processes. Philosophy & Technology, 31, 611–627. DOI: https://doi.org/10.1007/s13347-017-0279-x . Ryan, M., & Stahl, B. C. (2020). Artificial Intelligence Ethics Guidelines for Developers and Users: Clarifying Their Content and Normative Implications. Journal of Information, Communication and Ethics in Society, 18(2), 261–284. DOI: https://doi.org/10.1108/JICES-12-2019-0138 . Stahl, B. C., Timmermans, J., & Mittelstadt, B. D. (2021). Ethics of Technology: Theoretical Foundations and Practical Application. Technology in Society, 65, 101620. DOI: https://doi.org/10.1016/j.techsoc.2021.101620 . Smuha, N. A. (2019). The EU Approach to Ethics Guidelines for Trustworthy Artificial Intelligence. Computer Law Review International, 20(4), 97–106. DOI: https://doi.org/10.9785/cri-2019-200402 . Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why A Right To Explanation of Automated Decision-Making Does Not Exist In The General Data Protection Regulation. International Data Privacy Law, 7(2), 76–99. DOI: https://doi.org/10.1093/idpl/ipx005 . Winfield, A. F., & Jirotka, M. (2018). Ethical Governance Is Essential to Building Trust In Robotics and Artificial Intelligence Systems. Philosophical Transactions of the Royal Society A, 376(2133), 20180085. DOI: https://doi.org/10.1098/rsta.2018.0085 . Mökander, J., Axente, M., Casado, M., Creus, J., Dignum, V., & Dignum, F. (2021). Operationalizing AI Ethics: Barriers, Enablers and Next Steps. AI and Ethics, 1, 431–445. DOI: https://doi.org/10.1007/s43681-021-00047-5 . Gasser, U., & Almeida, V. A. F. (2017). A Layered Model for AI Governance. IEEE Internet Computing, 21(6), 58–62. DOI: DOI: https://doi.org/10.1109/MIC.2017.4180835 . Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR). Springer. DOI: https://doi.org/10.1007/978-3-319-57959-7 . Green, B., & Viljoen, S. (2020). Algorithmic Realism: Expanding The Boundaries of Algorithmic Thought. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 19–31. DOI: https://doi.org/10.1145/3351095.3372840 . Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled Artificial Intelligence: Mapping Consensus In Ethical and Rights-Based Approaches to Principles for AI. Berkman Klein Center Research Publication, (2020-1). DOI: https://doi.org/10.2139/ssrn.3518482 . Binns, R. (2018). Fairness In Machine Learning: Lessons From Political Philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149–159. DOI: https://doi.org/10.1145/3287560.3287598 . Risse, M. (2019). Human Rights and Artificial Intelligence: An Urgently Needed Agenda. Human Rights Quarterly, 41(1), 1–16. DOI: https://doi.org/10.1353/hrq.2019.0000 . Braun, V., & Clarke, V. (2019). Reflecting On Reflexive Thematic Analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. DOI: https://doi.org/10.1080/2159676X.2019.1628806 . Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). It’s Reducing A Human Being to A Percentage: Perceptions of Justice In Algorithmic Decisions. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. DOI: https://doi.org/10.1145/3173574.3173951 . Coeckelbergh, M. (2020). AI ethics. MIT Press. DOI: https://doi.org/10.7551/mitpress/12231.001.0001 . Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning. arXiv preprint. DOI: https://doi.org/10.48550/arXiv.1702.08608 . Elish, M. C. (2019). Moral Crumple Zones: Cautionary Tales In Human-Robot Interaction. Engaging Science, Technology, and Society, 5, 40–60. DOI: https://doi.org/10.17351/ests2019.261 . Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H. (2019). Improving Fairness In Machine Learning Systems: What do Industry Practitioners Need?. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–16. DOI: https://doi.org/10.1145/3290605.3300830 Lipton, Z. C. (2018). The Mythos of Model Interpretability. Communications of the ACM, 61(10), 36–43. https://doi.org/10.1145/3233231 . Mittelstadt, B. D. (2019). Principles Alone Cannot Guarantee Ethical AI. Nature Machine Intelligence, 1(11), 501–507. DOI: https://doi.org/10.1038/s42256-019-0114-4 . Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2021). From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles Into Practices. Science and Engineering Ethics, 27(1), 1–31. DOI: https://doi.org/10.1007/s11948-020-00239-7 . Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751–752. DOI: https://doi.org/10.1126/science.aat5991 . |
Published
2025-05-27
Section
Articles
How to Cite
Sari, R. R., Sikki, N., Chintiyani, F., Pusparani, K. V., Putri, L. Z., Sari, Y. P., HR, L. N., Depi, J. N., & Nasution, N. F. (2025). The Impact of Artificial Intelligence Implementation on Business Ethics in Corporate Decision-Making. Jurnal Informatika Ekonomi Bisnis, 7(2), 226-231. https://doi.org/10.37034/infeb.v7i2.1127
![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |


















