Deep Learning for Anomaly Detection and Fraud Analysis in Blockchain Transactions of the Open Metaverse
Keywords:
Anomaly Detection, Blockchain Transactions, Deep Learning, Open Metaverse, Fraud Analysis
AbstractThis study investigates the application of deep learning models for anomaly detection and fraud analysis within blockchain transactions of the Open Metaverse. Given the burgeoning complexity and scale of virtual environments, ensuring the integrity and security of blockchain transactions is paramount. We employed three deep learning architectures: Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM), to analyze and predict transactional anomalies. Using a dataset comprising 78,600 records of metaverse transactions, each model was rigorously evaluated through a 5-fold cross-validation approach, focusing on the Mean Squared Error (MSE) as the primary performance metric. The MLP model demonstrated superior predictive accuracy with the lowest average CV MSE, suggesting its effectiveness in capturing the intricate patterns of blockchain transactions. The study's findings highlight the nuanced capabilities of each model in addressing the specific challenges of fraud analysis and anomaly detection in the metaverse's blockchain environment. By providing a comparative analysis of these deep learning approaches, this research contributes to the strategic development of security measures in the Open Metaverse, promoting a secure and trustworthy digital economy. Downloads
Download data is not yet available.
ReferencesShukla, S., Bisht, K., Tiwari, K., & Bashir, S. (2023). Comparative Study of the Global Data Economy. In Data Economy in the Digital Age (pp. 63–86). https://doi.org/10.1007/978-981-99-7677-5_4 Akour, M., & Alenezi, M. (2022). Higher education future in the era of digital transformation. Education Sciences, 12(11), 784. https://doi.org/10.3390/educsci12110784 Chipangamate, N. S., & Nwaila, G. T. (2023). Assessment of challenges and strategies for driving energy transitions in emerging markets: A socio-technological systems perspective. Energy Geoscience, 100257. https://doi.org/10.1016/j.engeos.2023.100257 Jamshidi, M., Dehghaniyan Serej, A., Jamshidi, A., & Moztarzadeh, O. (2023). The meta-metaverse: ideation and future directions. Future Internet, 15(8), 252. https://10.3390/fi15080252 Chatzopoulou, I., Tsoutsa, P., & Fitsilis, P. (2023). How Metaverse is Affecting Smart Cities Economy. In Proceedings of the 27th Pan-Hellenic Conference on Progress in Computing and Informatics (pp. 254–259). Chen, H., Duan, H., Abdallah, M., Zhu, Y., Wen, Y., Saddik, A. E., & Cai, W. (2023). Web3 Metaverse: State-of-the-art and vision. ACM Transactions on Multimedia Computing, Communications, and Applications, 20(4), 1–42. https://doi.org/10.1145/3630258 Aljanabi, M., & Mohammed, S. Y. (2023). Metaverse: open possibilities. Iraqi Journal For Computer Science and Mathematics, 4(3), 79–86. https://doi.org/10.52866/ijcsm.2023.02.03.007 Ajani, Y. A., Enakrire, R. T., Oladokun, B. D., & Bashorun, M. T. (2023). Reincarnation of libraries via metaverse: A pathway for a sustainable knowledge system in the digital age. Business Information Review, 40(4), 191–197. https://doi.org/10.1177/02663821231208044 Koohang, A., Nord, J. H., Ooi, K.-B., Tan, G. W.-H., Al-Emran, M., Aw, E. C.-X., Baabdullah, A. M., Buhalis, D., Cham, T.-H., Dennis, C., et al. (2023). Shaping the metaverse into reality: a holistic multidisciplinary understanding of opportunities, challenges, and avenues for future investigation. Journal of Computer Information Systems, 63(3), 735–765. https://doi.org/10.1080/08874417.2023.2165197 Abdelmaboud, A., Ahmed, A. I. A., Abaker, M., Eisa, T. A. E., Albasheer, H., Ghorashi, S. A., & Karim, F. K. (2022). Blockchain for IoT applications: taxonomy, platforms, recent advances, challenges, and future research directions. Electronics, 11(4), 630. https://doi.org/10.3390/electronics11040630 Oladejo, M. T. (2023). Blockchain technology: Disruptor or enhancer to the accounting and auditing profession (Doctoral dissertation, The University of Waikato). Mourtzis, D. (2023). The Metaverse in Industry 5.0: A Human-Centric Approach towards Personalized Value Creation. Encyclopedia, 3(3), 1105–1120. https://doi.org/10.3390/encyclopedia3030080 Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of IoT for better financial growth and stability: A comprehensive survey. Sensors, 23(19), 8015. https://doi.org/10.3390/s23198015 Grech, A. (2023). Young people & information. A manifesto. The 3CL Foundation. Jones, M. O. (2022). Digital authoritarianism in the Middle East: Deception, disinformation and social media. Hurst Publishers. Kyriazis, N. A. (2020). Is Bitcoin similar to gold? An integrated overview of empirical findings. Journal of Risk and Financial Management, 13(5), 88. https://doi.org/ 10.3390/jrfm13050088 Ud Din, I., Awan, K. A., Almogren, A., & Rodrigues, J. J. P. C. (2023). Integration of IoT and blockchain for decentralized management and ownership in the metaverse. International Journal of Communication Systems, 36(18). https://doi.org/10.1002/dac.5612 Bao, N., Nakazato, J., Muhammad, A., Javanmardi, E., & Tsukada, M. (2023). Towards a Trusted Inter-Reality: Exploring System Architectures for Digital Identification. In Proceedings of the 13th International Conference on the Internet of Things (pp. 270–275). Huynh-The, T., Pham, Q.-V., Pham, X.-Q., Nguyen, T. T., Han, Z., & Kim, D.-S. (2023). Artificial intelligence for the metaverse: A survey. Engineering Applications of Artificial Intelligence, 117, 105581. https://doi.org/10.1016/j.engappai.2022.105581 Ressi, D., Romanello, R., Piazza, C., & Rossi, S. (2024). AI-enhanced blockchain technology: A review of advancements and opportunities. Journal of Network and Computer Applications, 103858. https://doi.org/10.1016/j.jnca.2024.103858 Ma, W., & Huang, K. (2022). Blockchain and Web3: Building the cryptocurrency, privacy, and security foundations of the metaverse. John Wiley & Sons. Albshaier, L., Almarri, S., & Hafizur Rahman, M. M. (2024). A Review of Blockchain’s Role in E-Commerce Transactions: Open Challenges, and Future Research Directions. Computers, 13(1), 27. https://doi.org/10.3390/computers13010027 Mammadova, A. (2023). Digital big-bang Metaverse: opportunities and threats. Salahdine, F., Han, T., & Zhang, N. (2023). Security in 5G and beyond recent advances and future challenges. Security and Privacy, 6(1), e271. https://doi.org/10.1002/spy2.271 Diro, A., Chilamkurti, N., Nguyen, V.-D., & Heyne, W. (2021). A comprehensive study of anomaly detection schemes in IoT networks using machine learning algorithms. Sensors, 21(24), 8320. https://doi.org/10.3390/s21248320 Truong, V. T., Le, L., & Niyato, D. (2023). Blockchain meets metaverse and digital asset management: A comprehensive survey. IEEE Access, 11, 26258–26288. https://doi.org/10.1109/ACCESS.2023.3257029 Ullah, N., Mugahed Al-Rahmi, W., Alzahrani, A. I., Alfarraj, O., & Alblehai, F. M. (2021). Blockchain technology adoption in smart learning environments. Sustainability, 13(4), 1801. https://doi.org/10.3390/su13041801 Zawish, M., Dharejo, F. A., Khowaja, S. A., Raza, S., Davy, S., Dev, K., & Bellavista, P. (2024). AI and 6G into the metaverse: Fundamentals, challenges and future research trends. IEEE Open Journal of the Communications Society, 5, 730–778. https://doi.org/10.1109/OJCOMS.2023.3349465 Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., & Shen, X. (2022). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25(1), 319–352. https://doi.org/10.1109/COMST.2022.3202047 Park, S.-M., & Kim, Y.-G. (2022). A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access, 10, 4209–4251. https://doi.org/10.1109/ACCESS.2021.3140175 Janjua, F. I. (2023). Metaverse Financial Transactions Dataset. Retrieved April 4, 2024, from https://www.kaggle.com/datasets/faizaniftikharjanjua/metaverse-financial-transactions-dataset |
Published
2024-06-30
Section
Articles
How to Cite
Airlangga, G. (2024). Deep Learning for Anomaly Detection and Fraud Analysis in Blockchain Transactions of the Open Metaverse. Jurnal Informatika Ekonomi Bisnis, 6(2), 324-329. https://doi.org/10.37034/infeb.v6i2.865
This work is licensed under a Creative Commons Attribution 4.0 International License. |