Analysis of Airline Passenger Satisfaction Using Decision Tree and Naïve Bayes Algorithms
Keywords:
Airline Passenger Satisfaction, Decision Tree, Naïve Bayes, In-Flight Services, Customer Satisfaction
AbstractIn the dynamic landscape of airline services, comprehending the intricacies that mold customer satisfaction is paramount to elevating overall service quality. This study aspires to dissect these pivotal elements, contributing nuanced insights that can propel the enhancement of customer satisfaction within the industry. A multifaceted investigation encompasses analyzing demographic data, exploring underlying factors significantly shaping passenger satisfaction, and identifying the most adept model for forecasting imminent passenger satisfaction outcomes. A model was meticulously crafted by leveraging a decision tree algorithm to discern the substantial variables influencing passenger satisfaction. Simultaneously, the Naïve Bayes algorithm was harnessed to prognosticate forthcoming passenger satisfaction. The findings underscore the diverse facets of the flying experience impacting satisfaction, with both ctree and rpart decision tree algorithms spotlighting critical factors, such as online boarding, inflight entertainment, WiFi service, class, and travel type. The Naïve Bayes algorithm demonstrates around 87% accuracy in predicting passenger satisfaction, underscoring its efficacy in discerning patterns within this complex realm. Downloads
Download data is not yet available.
ReferencesAshwika, Dishali G K, & Hemalatha N. (2020). Airline Passenger Satisfaction Prediction Using Machine Learning Algorithms. Redshine Archive, 1, 8–24. DOI: https://doi.org/10.25215/8119070682.24 . Ban, H. J., & Kim, H. S. (2019). Understanding Customer Experience and Satisfaction Through Airline Passengers' Online Reviews. Sustainability (Switzerland), 11(15), 4066. DOI: https://doi.org/10.3390/su11154066 . Hulliyah, K. (2021). Predicting Airline Passenger Satisfaction with Classification Algorithms. IJIIS: International Journal of Informatics and Information Systems, 4(1), 82–94. DOI: https://doi.org/10.47738/ijiis.v4i1.80 . Ludwig, S. A., Picek, S., & Jakobovic, D. (2018). Classification of Cancer Data: Analyzing Gene Expression Data Using A Fuzzy Decision Tree Algorithm. International Series in Operations Research and Management Science, 262, 327–347. DOI: https://doi.org/10.1007/978-3-319-65455-3_13 . Mustopa, A., Wildah, S. K., Wijaya, G., Gata, W., & Agustiani, S. (2020). Pengaruh Media terhadap Pengambilan Keputusan dalam Menjalankan Program Keluarga Berencana dengan Algoritma Decision Tree. Paradigma - Jurnal Komputer dan Informatika, 22(2), 145–152. DOI: https://doi.org/10.31294/p.v22i2.8141 . Nurdina, A., & Puspita, A. B. I. (2023). Naive Bayes and KNN for Airline Passenger Satisfaction Classification: Comparative Analysis. Journal of Information System Exploration and Research, 1(2). DOI: https://doi.org/10.52465/joiser.v1i2.167 . Ranggadara, I., Wang, G., & Kaburuan, E. R. (2019). Applying Customer Loyalty Classification with RFM and Naïve Bayes for Better Decision Making. Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, ISemantic 2019, 564–568. DOI: https://doi.org/10.1109/ISEMANTIC.2019.8884262 . Sezgin, E., & Yuncu, D. (2016). The SWOT Analysis of Turkish Airlines Through Skytrax Quality Evaluations in the Global Brand Process. Development of Tourism and the Hospitality Industry in Southeast Asia, 65–81. DOI: https://doi.org/10.1007/978-981-287-606-5_5 . Yunus, W., Desanti, R. I., & Wella, W. (2020). Data Visualization And Sales Prediction of PD. Asia Agung (Ajinomoto) Pontianak in 2019. IJNMT (International Journal of New Media Technology), 7(2), 51–57. DOI: https://doi.org/10.31937/ijnmt.v7i2.1697 . Zhang, H., Jiang, L., & Yu, L. (2020). Class-specific attribute value weighting for Naive Bayes. Information Sciences, 508, 260–274. DOI: https://doi.org/10.1016/j.ins.2019.08.071 . Aileen Chun Yueng Hong, Khaw, K. W., Xinying Chew, & Wai Chung Yeong. (2023). Prediction of US airline passenger satisfaction using machine learning algorithms. Data Analytics and Applied Mathematics (DAAM), 8–24. DOI: https://doi.org/10.15282/daam.v4i1.9071 . Botchey, F. E., Qin, Z., & Hughes-Lartey, K. (2020). Mobile Money Fraud Prediction-A Cross-Case Analysis on The Efficiency of Support Vector Machines, Gradient Boosted Decision Trees, and Naïve Bayes Algorithms. Information (Switzerland), 11(8). DOI: https://doi.org/10.3390/INFO11080383 . Dinesh, T. (2021). Higher Classification of Fake Political News Using Decision Tree Algorithm Over Naive Bayes Algorithm. Revista Gestão Inovação e Tecnologias, 11(2), 1084–1096. DOI: https://doi.org/10.47059/revistageintec.v11i2.1738 . Noviriandini, A., & Nurajijah, N. (2019). Analisis Kinerja Algoritma C4.5 Dan Naïve Bayes Untuk Memprediksi Prestasi Siswa Sekolah Menengah Kejuruan. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), 5(1), 23–28. DOI: https://doi.org/10.33480/jitk.v5i1.607 . Maheswari, S., & Pitchai, R. (2018). Heart Disease Prediction System Using Decision Tree and Naive Bayes Algorithm. Current Medical Imaging Formerly Current Medical Imaging Reviews, 15(8), 712–717. DOI: https://doi.org/10.2174/1573405614666180322141259 . Yogesh, L., Arunadevi, M., & Prakash, C. P. S. (2021). Predicton of MRR & surface roughness in wire EDM machining using decision tree and naive bayes algorithm. In 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021 (pp. 527–532). Institute of Electrical and Electronics Engineers Inc. DOI: https://doi.org/10.1109/ESCI50559.2021.9396857 . Mabe-Madisa, G. V. (2018). A Decision Tree and Naïve Bayes Algorithm for Income Tax Prediction. African Journal of Science, Technology, Innovation and Development, 10(4), 401–409. DOI: https://doi.org/10.1080/20421338.2018.1466440 . Sumpena, S., Akbar, Y., Nirat, N., & Hengky, M. (2019). ICU Patient Prediction for Moving with Decision Tree C4.5 and Naïve Bayes Algorithm. SinkrOn, 4(1), 88. DOI: https://doi.org/10.33395/sinkron.v4i1.10150 . Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. DOI: https://doi.org/10.14421/jiska.2021.6.3.178-188 . Putri, T. A. Q., Triayudi, A., & Aldisa, R. T. (2023). Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen terhadap Kepuasan Pelanggan Starbucks. Journal of Information System Research (JOSH), 4(2), 641–649. DOI: https://doi.org/10.47065/josh.v4i2.2949 . |
Published
2023-12-31
Issue
Section
Articles
How to Cite
Suprapto, D. S., & Oetama, R. (2023). Analysis of Airline Passenger Satisfaction Using Decision Tree and Naïve Bayes Algorithms. Jurnal Informatika Ekonomi Bisnis, 5(4), 1493-1500. https://doi.org/10.37034/infeb.v5i4.728
This work is licensed under a Creative Commons Attribution 4.0 International License. |