Advancing Alzheimer’s Diagnosis: A Comparative Analysis of Deep Learning Architectures on Multidimensional Health Data
Keywords:
Alzheimer’s Disease, Deep Learning, Machine Learning, Diagnostic Tools, Multidimensional Health Data
AbstractAlzheimer’s Disease (AD) is a leading cause of disability among the elderly, with its prevalence projected to triple by 2050. Early detection remains critical for effective disease management, yet traditional diagnostic methods are often time-intensive and subjective. This study investigates the effectiveness of three machine learning architectures: Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) in detecting Alzheimer’s Disease using a multidimensional dataset comprising demographic, lifestyle, medical, cognitive, and functional data from 2,149 patients. Each model was evaluated using 10-fold cross-validation, with performance metrics including accuracy, precision, recall, and F1-score. The CNN model demonstrated superior performance, achieving an average accuracy of 88.65%, surpassing both the MLP (84.41%) and LSTM (75.57%) models. These results highlight CNNs’ capability to effectively extract spatial patterns in health data, making them a promising tool for Alzheimer’s diagnosis. In contrast, LSTM underperformed due to the lack of temporal relationships in the dataset. This study underscores the importance of aligning model architecture with dataset characteristics and provides a foundation for integrating machine learning into clinical workflows. Future work will focus on hybrid architectures and real-world validation to enhance diagnostic accuracy and scalability.Downloads
Download data is not yet available.
ReferencesAbubakar, M. B., Sanusi, K. O., Ugusman, A., Mohamed, W., Kamal, H., Ibrahim, N. H., Khoo, C. S., & Kumar, J. (2022). Alzheimer’s disease: An update and insights into pathophysiology. Frontiers in Aging Neuroscience, 14, 742408. https://doi.org/10.3389/fnagi.2022.742408 Dong, Y., Peng, R., Kang, H., Song, K., Guo, Q., Zhao, H., Zhu, M., Zhang, Y., Guan, H., & Li, F. (2022). Global incidence, prevalence, and disability of vertebral fractures: A systematic analysis of the global burden of disease study 2019. The Spine Journal, 22(5), 857–868. https://doi.org/10.1016/j.spinee.2021.12.007 Nandi, A., Counts, N., Chen, S., Seligman, B., Tortorice, D., Vigo, D., & Bloom, D. E. (2022). Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: A value of statistical life approach. EClinicalMedicine, 51, 101580. https://doi.org/10.1016/j.eclinm.2022.101580 Dara, O. A., Lopez-Guede, J. M., Raheem, H. I., Rahebi, J., Zulueta, E., & Fernandez-Gamiz, U. (2023). Alzheimer’s disease diagnosis using machine learning: A survey. Applied Sciences, 13(14), 8298. https://doi.org/10.3390/app13148298 Deng, Y., Wang, H., Gu, K., & Song, P. (2023). Alzheimer's disease with frailty: Prevalence, screening, assessment, intervention strategies and challenges. Bioscience Trends, 17(4), 283–292. https://doi.org/10.5582/bst.2023.01112 Mahaman, Y. A. R., Embaye, K. S., Huang, F., Li, L., Zhu, F., Wang, J.-Z., Liu, R., Feng, J., & Wang, X. (2022). Biomarkers used in Alzheimer’s disease diagnosis, treatment, and prevention. Ageing Research Reviews, 74, 101544. https://doi.org/10.1016/j.arr.2021.101544 Strielkowski, W., Vlasov, A., Selivanov, K., Muraviev, K., & Shakhnov, V. (2023). Prospects and challenges of the machine learning and data-driven methods for the predictive analysis of power systems: A review. Energies, 16(10), 4025. https://doi.org/10.3390/en16104025 Liss, J. L., Seleri Assunção, S., Cummings, J., Atri, A., Geldmacher, D. S., Candela, S. F., Devanand, D. P., Fillit, H. M., Susman, J., & Mintzer, J. (2021). Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: A review and synthesis. Journal of Internal Medicine, 290(2), 310–334. https://doi.org/10.1111/joim.13254 González, D. A., Gonzales, M. M., Jennette, K. J., Soble, J. R., & Fongang, B. (2021). Cognitive screening with functional assessment improves diagnostic accuracy and attenuates bias. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12250. https://doi.org/10.1002/dad2.12250 Gangwal, A., Ansari, A., Ahmad, I., Azad, A. K., & Sulaiman, W. M. A. W. (2024). Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Computers in Biology and Medicine, 179, 108734. https://doi.org/10.1016/j.compbiomed.2023.108734 Chang, C. Y., Slowiejko, D., & Win, N. (2024). Prediction and clustering of Alzheimer’s disease by race and sex: A multi-head deep-learning approach to analyze irregular and heterogeneous data. Scientific Reports, 14(1), 26668. https://doi.org/10.1038/s41598-024-26668-0 Madan, P., Singh, V., Chaudhari, V., Albagory, Y., Dumka, A., Singh, R., Gehlot, A., Rashid, M., Alshamrani, S. S., & AlGhamdi, A. S. (2022). An optimization-based diabetes prediction model using CNN and Bi-directional LSTM in real-time environment. Applied Sciences, 12(8), 3989. https://doi.org/10.3390/app12083989 Chowdhury, S. R., Khare, Y., & Mazumdar, S. (2023). Classification of diseases from CT images using LSTM-based CNN. In Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods (pp. 235–249). Elsevier. https://doi.org/10.1016/B978-0-323-91137-1.00014-0 Hossain, M. M., Ali, M. S., Ahmed, M. M., Rakib, M. R. H., Kona, M. A., Afrin, S., Islam, M. K., Ahsan, M. M., Raj, S. M. R. H., & Rahman, M. H. (2023). Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Informatics in Medicine Unlocked, 42, 101370. https://doi.org/10.1016/j.imu.2023.101370 Moya, J. A. B. (2024). Addressing the gaps in early dementia detection: A path towards enhanced diagnostic models through machine learning. arXiv preprint arXiv:2409.03147. https://doi.org/10.48550/arXiv.2409.03147 El-Sappagh, S., Alonso, J. M., Islam, S. M. R., Sultan, A. M., & Kwak, K. S. (2021). A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Scientific Reports, 11(1), 2660. https://doi.org/10.1038/s41598-021-82213-5 Saif, F. H., Al-Andoli, M. N., & Bejuri, W. M. Y. W. (2024). Explainable AI for Alzheimer detection: A review of current methods and applications. Applied Sciences, 14(22), 10121. https://doi.org/10.3390/app142210121 Chen, K., Weng, Y., Hosseini, A. A., Dening, T., Zuo, G., & Zhang, Y. (2024). A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis. Neural Networks, 169, 442–452. https://doi.org/10.1016/j.neunet.2023.11.001 Mirza, A. F., Mansoor, M., Usman, M., & Ling, Q. (2023). A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model. Energy, 283, 129189. https://doi.org/10.1016/j.energy.2023.129189 Offodile, A. C., Gallagher, K., Angove, R., Tucker-Seeley, R. D., Balch, A., & Shankaran, V. (2022). Financial navigation in cancer care delivery: State of the evidence, opportunities for research, and future directions. Journal of Clinical Oncology, 40(21), 2291–2294. https://doi.org/10.1200/JCO.21.02221 Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2024). AI-powered cloud-based epidemic surveillance system: A framework for early detection. Revista de Inteligencia Artificial en Medicina, 15(1), 673–690. https://doi.org/10.1016/j.artmed.2023.101417 Cohen, A. B., Stump, L., Krumholz, H. M., Cartiera, M., Jain, S., Sussman, L. S., Hsiao, A., Lindop, W., Ying, A. K., Kaul, R. L., & Others. (2022). Aligning mission to digital health strategy in academic medical centers. NPJ Digital Medicine, 5(1), 67. https://doi.org/10.1038/s41746-022-00611-4 Addo, K. M., & Khan, H. (2024). Factors affecting healthy aging and its interconnected pathways. Turkish Journal of Healthy Aging Medicine, 15(1), 9–24. Newby, D., Orgeta, V., Marshall, C. R., Lourida, I., Albertyn, C. P., Tamburin, S., Raymont, V., Veldsman, M., Koychev, I., Bauermeister, S., & Others. (2023). Artificial intelligence for dementia prevention. Alzheimer’s & Dementia, 19(12), 5952–5969. https://doi.org/10.1002/alz.13072 Rabie El Kharoua. (2024). Alzheimer’s disease dataset. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/8668279 |
Published
2024-12-31
Section
Articles
How to Cite
Airlangga, G. (2024). Advancing Alzheimer’s Diagnosis: A Comparative Analysis of Deep Learning Architectures on Multidimensional Health Data. Jurnal Informatika Ekonomi Bisnis, 6(4), 810-814. https://doi.org/10.37034/infeb.v6i4.1046
![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |