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Abstract

This research delves into the potential of machine learning models, namely Support Vector Machine (SVM), XGBoost, and
LightGBM, to enhance the diagnosis of Urinary Tract Infections (UTIs) based on a comprehensive dataset collected from a
local clinic in Northern Mindanao, Philippines, spanning from April 2020 to January 2023. The study integrates clinical
variables such as age, gender, and various urine test results including color, transparency, and the presence of substances like
glucose, protein, and cells, to determine the most accurate diagnostic model. The dataset presented unique preprocessing
challenges, such as converting infant ages into decimal numbers. The SVM with a linear kernel showed remarkable test
accuracy of 98.25%, indicating its robustness in handling linear separability in the data. Meanwhile, XGBoost and LightGBM,
both with optimal hyperparameter configurations, achieved comparable accuracies of 97.95%. These results underscore the
significance of machine learning in medical diagnostics, particularly in settings where swift and reliable decision-making is
crucial. Our findings suggest that while ensemble methods like XGBoost and LightGBM are powerful tools for complex

datasets, a well-tuned SVM can provide superior accuracy, thus advocating for a data-centric approach in model selection.
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1. Introduction

The Urinary Tract Infections (UTIs) are a prevalent
condition worldwide, with significant impacts on public
health and healthcare systems [1], [2], [3]. Characterized
by a wide range of symptoms, UTlIs can affect any part
of the urinary system, with the majority involving the
lower urinary tract [4], [5], [6]. The traditional
diagnostic process relies heavily on clinical assessment
and laboratory urinalysis, with the final diagnosis often
hinging on the cultivation of urinary pathogens [7], [8],
[9]. However, this approach is fraught with challenges,
including time-consuming culture methods and the
potential for ambiguous or misleading results due to
contamination or asymptomatic bacteriuria [10], [11],
[12]. Moreover, the increasing prevalence of antibiotic-
resistant strains of UTI-causing bacteria accentuates the
need for precise and timely diagnosis to guide effective
treatment strategies [13], [14], [15].

The application of machine learning (ML) in medical
diagnostics has emerged as a powerful tool to augment
traditional methodologies, offering new avenues to
improve accuracy, efficiency, and patient outcomes
[16], [17], [18]. In the realm of UTI diagnostics, ML
algorithms hold the promise of leveraging complex
clinical and laboratory data to predict infection presence
and guide therapeutic decisions more accurately [19],
[20], [21]. This potential comes against the backdrop of
an ever-growing digitalization of healthcare data and
advancements in computational power and algorithmic
sophistication [22], [23], [24].

A survey of the literature reveals a burgeoning interest
in applying ML to various aspects of UTI management,
from identifying risk factors and predicting infection
susceptibility to automating urinalysis interpretation
[25], [26], [27]. Despite these advances, the integration
of ML into routine clinical practice for UTI diagnosis
remains limited [28], [29], [30]. Several studies have
highlighted the capabilities of ML models to outperform
traditional statistical approaches in predicting UTIs,
underscoring the feasibility and potential benefits of
such technologies [31], [32], [33]. However, these
studies also point to a critical gap: the need for
comprehensive, real-world evaluations of ML models to
establish their practical utility and operationalize their
integration into clinical workflows [34], [35], [36].

The urgency of refining UTI diagnostic processes
cannot be overstated. The misdiagnosis of UTIs leads to
inappropriate  treatment, including  unnecessary
antibiotic use, contributing to the global crisis of
antibiotic resistance [37], [38], [39]. Moreover, delayed
or missed diagnoses can result in patient morbidity,
increased healthcare cost, and a higher burden on
healthcare resources [40], [41]. In this context, the
promise of ML to enhance diagnostic accuracy is not
merely an academic pursuit but a pressing public health
imperative.

This research aims to address these challenges by
developing and validating an advanced ML-based
diagnostic model for UTlIs. Utilizing a comprehensive
dataset from a local clinic in Northern Mindanao,
Philippines, this study compares the performance of
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several ML algorithms, including logistic regression,
support vector machines, XGBoost, and LightGBM, in
predicting UTI diagnoses [42]. The goals are twofold: to
identify the most effective ML models for UTI diagnosis
based on real-world clinical data and to integrate these
models into a practical tool that can support clinicians in
making more accurate and timely diagnostic decisions.

The gap this research seeks to fill is multifaceted.
Firstly, it addresses the need for rigorous, comparative
analyses of different ML algorithms in the context of
UTI diagnostics, an area where previous research has
been somewhat piecemeal. Secondly, it contributes to
the methodological advancement of ML in healthcare by
proposing novel approaches to data preprocessing and
feature engineering, tailored to the unique challenges of
UTI diagnostic data. Finally, by focusing on the
operationalization of ML models in clinical settings, this
study moves beyond theoretical accuracy to assess the
practical viability and user acceptance of ML-assisted
diagnostics.

Our contribution to the field of medical diagnostics and,
more specifically, to the management of UTIs is
significant. By demonstrating the superior accuracy of
ML models over traditional diagnostic approaches, this
research paves the way for the adoption of Al-driven
diagnostic tools in clinical practice. Furthermore, the
development of a practical ML-based diagnostic tool
represents a concrete step toward the real-world
application of Al in healthcare, potentially setting a
precedent for the broader integration of ML in disease
diagnosis and management. The structure of this article
unfolds as follows: Section 2 details the materials and
methods, including the dataset description, ML
algorithms employed, data preprocessing techniques,
and model evaluation criteria. Section 3 presents the
results, offering a comparative analysis of the
performance of different ML models and discussing the
implications of these findings for clinical practice.
Furthermore, we delve into the discussion, interpreting
the results in the context of existing literature,
addressing the study's limitations, and suggesting
directions for future research. Lastly, we conclude the
article by summarizing the key findings, highlighting
the contributions of this research to the field, and
outlining the potential impacts on the diagnosis and
treatment of UTIs.

2. Research Method

In this study, we have embarked on an investigation to
harness the potential of machine learning (ML) for
optimizing the diagnosis of Urinary Tract Infections
(UTIs). Our methodology is anchored in a
comprehensive dataset, rigorous data preprocessing, and
the evaluation of various ML algorithms to ascertain
their diagnostic efficacy. This section elucidates the
materials and methods employed in our research,
detailing the dataset's origins, our preprocessing
techniques, and the ML algorithms we scrutinized.

2.1. Dataset Acquisition and Description

The foundation of our study is a dataset meticulously
collected from a local clinic in Northern Mindanao,
Philippines, covering the period from April 2020 to
January 2023 [42]. This dataset is comprised of records
from patients who underwent urinalysis, a standard
diagnostic test for UTIs. Each record encapsulates a
wealth of information, including demographic details
such as age and gender, alongside urinalysis results that
span parameters like color, transparency, glucose levels,
protein presence, pH, specific gravity, white blood cell
count (WBC), red blood cell count (RBC), epithelial
cells, mucous threads, amorphous urates, and bacteria
presence. The dataset is dichotomized into two
categories based on the diagnosis: UTI positive and UTI
negative, providing a clear target for our ML models.

2.2. Data Preprocessing

Prior to the application of ML algorithms, our dataset
underwent a series of preprocessing steps, critical for
refining the data into a format conducive for analysis.
This process commenced with data cleaning, where
incomplete records were identified and addressed,
ensuring the integrity of the dataset. Given the diverse
nature of the data, especially with variables expressed in
different formats and scales, normalization and
encoding were paramount.

Normalization involved adjusting continuous variables
like age, pH, and specific gravity to a common scale
without distorting differences in the ranges of values.
This was achieved using the MinMaxScaler, which
transforms the data within a bounded interval.
Categorical variables, such as gender and urinalysis
parameters like color and transparency, were encoded to
numerical values to facilitate their interpretation by the
ML algorithms. This included both one-hot encoding for
nominal features and ordinal encoding for ordinal
features, based on their inherent order or ranking.

Furthermore, recognizing the imbalance in the dataset
between UTI positive and negative diagnoses, we
employed Synthetic Minority Over-sampling Technique
(SMOTE). This technique generates synthetic samples
from the minority class, UTI positive in this case, to
create a balanced dataset, thereby enhancing the model's
ability to learn from an equal representation of both
classes.

2.3. Evaluation of Machine Learning Algorithms

With a preprocessed and balanced dataset, we proceeded
to the evaluation of various ML algorithms, each with
its unique strengths and suitability for binary
classification problems like UTI diagnosis. The
algorithms selected for this study encompass a range
from simple logistic regression, known for its
interpretability, to more complex models like support
vector machines (SVM), Random Forest, XGBoost, and
LightGBM, renowned for their robustness and high
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performance in a multitude of predictive tasks.
Additionally, we explored the efficacy of neural
networks, leveraging the capabilities of deep learning
for pattern recognition and classification.

For each algorithm, a detailed parameter tuning was
conducted using the Optuna framework, an optimization
software that automates the selection of the best
hyperparameters to maximize model performance. This
involved defining a search space for each parameter and
employing cross-validation to evaluate the model's
performance under different parameter combinations,
ensuring the robustness and generalizability of our
results.

2.4. Model Evaluation and Selection

The performance of each ML model was assessed using
a suite of metrics, including accuracy, precision, recall,
F1 score, and the area under the Receiver Operating
Characteristic (ROC) curve. These metrics provided a
comprehensive view of each model's diagnostic ability,
considering both the precision of positive predictions
and the overall rate of correct classifications. The model
showcasing the best performance across these metrics
was selected for further analysis and interpretation.

3. Result and Discussion

The results from the Table 1 to Table 3 indicate that the
Support Vector Machine (SVM), XGBoost, and
LightGBM algorithms show a range of testing
accuracies across different hyperparameter settings. In
this analysis, we can discuss the impact of these
hyperparameters on the model's performance and draw
some conclusions based on the data provided. Result for
SVM test can be seen on Table 1.

Table 1. SVM Testing Accuracy Results with Hyperparameter
Tuning Variations

C Kernel Test Accuracy
1 Linear 98.25
1 Poly 97.37
1 Poly 97.08
1 RBF 96.49
10 Linear 98.25
10 Poly 97.66
10 Poly 97.66
10 RBF 96.78
100 Linear 98.25
100 RBF 96.78

From Table 1, we observe that the SVM with a linear
kernel consistently performs well across different values
of the penalty parameter C, with the highest test
accuracy being 98.25%. This suggests that a linear
decision boundary is sufficient for the dataset used, and
increasing the complexity of the model with a higher C
value does not significantly impact the accuracy. The
poly kernel shows varied results, which might indicate
overfitting or underfitting depending on the degree of
the polynomial, while the RBF kernel's performance is
generally lower compared to the linear kernel, possibly

due to the nature of the data distribution. Furthermore,
result for XGBoost test can be seen on Table 2.

Table 2. XGBoost Testing Accuracy Results with Hyperparameter
Tuning Variation

Max Depth  Learning Rate  n_estimators  Test Accuracy
3 0.1 100 97.37
4 0.1 100 97.66
5 0.1 100 97.66
3 0.01 100 96.78
3 0.1 200 97.66
4 0.01 200 96.78
5 0.05 200 97.95
3 0.05 300 97.37
4 0.05 300 97.66
5 0.01 300 96.78

Table 2 shows the performance of XGBoost with
varying max depths, learning rates, and numbers of
estimators. It is apparent that the model is quite robust
to changes in the max depth, but there is a slight increase
in accuracy as the learning rate decreases and the
number of estimators increases. The best test accuracy
is 97.95% with a learning rate of 0.05 and 200
estimators. This could mean that the model benefits
from more gradual learning, allowing it to generalize
better. Lastly, LightGBM test can be seen on Table 3.

Table 3. LightGBM Testing Accuracy Results with Hyperparameter
Tuning Variation

Max Depth LR n_estimators TA
-1 0.1 100 97.37
10 0.1 100 97.66
20 0.1 100 97.66
-1 0.01 100 96.49
-1 0.1 200 97.95
10 0.01 200 96.78
20 0.05 200 97.95
-1 0.05 300 97.37
10 0.05 300 97.66
20 0.01 300 96.78

Wijere LR is learning rate and TA is test accuracy. In
Table 3, LightGBM's results are similar to those of
XGBoost, with the highest accuracy also being 97.95%
but occurring at a max depth of -1, indicating no limit,
and with 200 estimators. This could suggest that
LightGBM handles overfitting well even with a larger
number of leaves. However, unlike XGBoost, a max
depth of -1 (no limit) combined with a learning rate of
0.1 and 100 estimators did not yield the highest
accuracy, possibly due to a different handling of tree
complexity and growth strategies between the two
frameworks.

The analysis of the results from the tables showcasing
the performances of SVM, XGBoost, and LightGBM
models reveals that achieving higher test accuracies is
closely tied to the careful tuning of hyperparameters.
This underscores the pivotal role that hyperparameter
optimization plays in enhancing the efficacy of machine
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learning models. Particularly noteworthy is the superior
performance of the SVM with a linear kernel across
various configurations of the penalty parameter C,
suggesting that the decision boundary within the data
may not be overly complex. This could also hint at the
possibility that the dimensions within the dataset are
already sufficiently distinct, obviating the need for more
sophisticated models.

In the case of both XGBoost and LightGBM, we observe
that maintaining an equilibrium between the learning
rate and the number of estimators is instrumental in
achieving higher accuracy. Optimal performance is not
necessarily associated with either excessively swift or
unduly gradual learning rates. Intriguingly, the data
reveals a potential linear separability, as indicated by the
highest accuracy achieved by the linear SVM. Despite
their typical aptitude for handling more intricate
datasets, the ensemble methods XGBoost and
LightGBM do not significantly outperform the SVM,
which could reflect on the dataset's inherent
characteristics. Furthermore, the consistent performance
of the models under various hyperparameter conditions
merits attention. The absence of any notable
performance degradation suggests that the dataset in
question may exhibit a degree of robustness to these
parameters, or that the models are inherently resilient to
overfitting. Therefore, the selection of an appropriate
model and its hyperparameters is inherently contingent
upon the specific traits of the dataset in question. The
findings suggest that for the dataset at hand, a simpler
model such as the SVM with a linear kernel is quite
effective, achieving the highest level of accuracy
observed. However, it is important to acknowledge that
XGBoost and LightGBM also demonstrate competitive
performance, and with judicious hyperparameter tuning,
there is the potential to equal or even surpass the SVM's
accuracy.

4. Conclusion

In summary, the empirical evaluation of SVM,
XGBoost, and LightGBM models across a variety of
hyperparameter configurations provides valuable
insights into model selection and tuning in the context
of the dataset analyzed. The empirical evidence suggests
that a simpler model, SVM with a linear kernel, achieves
the most impressive accuracy, indicating that the dataset
may exhibit a linear separability. This finding
challenges the often-held belief that more complex
models invariably lead to better performance and
underscores the importance of matching model
complexity to dataset characteristics. While the
ensemble methods, XGBoost and LightGBM, did not
significantly surpass the performance of the SVM, their
competitive accuracies cannot be disregarded. This
demonstrates their potential effectiveness, especially
when fine-tuned, which may be crucial for more
complex or larger datasets where linear models might
fall short.
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