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Abstract  

This research delves into the potential of machine learning models, namely Support Vector Machine (SVM), XGBoost, and 

LightGBM, to enhance the diagnosis of Urinary Tract Infections (UTIs) based on a comprehensive dataset collected from a 

local clinic in Northern Mindanao, Philippines, spanning from April 2020 to January 2023. The study integrates clinical 

variables such as age, gender, and various urine test results including color, transparency, and the presence of substances like 

glucose, protein, and cells, to determine the most accurate diagnostic model. The dataset presented unique preprocessing 

challenges, such as converting infant ages into decimal numbers. The SVM with a linear kernel showed remarkable test 

accuracy of 98.25%, indicating its robustness in handling linear separability in the data. Meanwhile, XGBoost and LightGBM, 

both with optimal hyperparameter configurations, achieved comparable accuracies of 97.95%. These results underscore the 

significance of machine learning in medical diagnostics, particularly in settings where swift and reliable decision-making is 

crucial. Our findings suggest that while ensemble methods like XGBoost and LightGBM are powerful tools for complex 

datasets, a well-tuned SVM can provide superior accuracy, thus advocating for a data-centric approach in model selection. 

Keywords: Machine Learning, Urinary Tract Infections, Support Vector Machine, XGBoost, LightGBM.   

INFEB is licensed under a Creative Commons 4.0 International License. 

 

1. Introduction 

The Urinary Tract Infections (UTIs) are a prevalent 

condition worldwide, with significant impacts on public 

health and healthcare systems [1], [2], [3]. Characterized 

by a wide range of symptoms, UTIs can affect any part 

of the urinary system, with the majority involving the 

lower urinary tract [4], [5], [6]. The traditional 

diagnostic process relies heavily on clinical assessment 

and laboratory urinalysis, with the final diagnosis often 

hinging on the cultivation of urinary pathogens [7], [8], 

[9]. However, this approach is fraught with challenges, 

including time-consuming culture methods and the 

potential for ambiguous or misleading results due to 

contamination or asymptomatic bacteriuria [10], [11], 

[12]. Moreover, the increasing prevalence of antibiotic-

resistant strains of UTI-causing bacteria accentuates the 

need for precise and timely diagnosis to guide effective 

treatment strategies [13], [14], [15]. 

The application of machine learning (ML) in medical 

diagnostics has emerged as a powerful tool to augment 

traditional methodologies, offering new avenues to 

improve accuracy, efficiency, and patient outcomes 

[16], [17], [18]. In the realm of UTI diagnostics, ML 

algorithms hold the promise of leveraging complex 

clinical and laboratory data to predict infection presence 

and guide therapeutic decisions more accurately [19], 

[20], [21]. This potential comes against the backdrop of 

an ever-growing digitalization of healthcare data and 

advancements in computational power and algorithmic 

sophistication [22], [23], [24]. 

A survey of the literature reveals a burgeoning interest 

in applying ML to various aspects of UTI management, 

from identifying risk factors and predicting infection 

susceptibility to automating urinalysis interpretation 

[25], [26], [27]. Despite these advances, the integration 

of ML into routine clinical practice for UTI diagnosis 

remains limited [28], [29], [30]. Several studies have 

highlighted the capabilities of ML models to outperform 

traditional statistical approaches in predicting UTIs, 

underscoring the feasibility and potential benefits of 

such technologies [31], [32], [33]. However, these 

studies also point to a critical gap: the need for 

comprehensive, real-world evaluations of ML models to 

establish their practical utility and operationalize their 

integration into clinical workflows [34], [35], [36]. 

The urgency of refining UTI diagnostic processes 

cannot be overstated. The misdiagnosis of UTIs leads to 

inappropriate treatment, including unnecessary 

antibiotic use, contributing to the global crisis of 

antibiotic resistance [37], [38], [39]. Moreover, delayed 

or missed diagnoses can result in patient morbidity, 

increased healthcare cost, and a higher burden on 

healthcare resources [40], [41]. In this context, the 

promise of ML to enhance diagnostic accuracy is not 

merely an academic pursuit but a pressing public health 

imperative. 

This research aims to address these challenges by 

developing and validating an advanced ML-based 

diagnostic model for UTIs. Utilizing a comprehensive 

dataset from a local clinic in Northern Mindanao, 

Philippines, this study compares the performance of 
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several ML algorithms, including logistic regression, 

support vector machines, XGBoost, and LightGBM, in 

predicting UTI diagnoses [42]. The goals are twofold: to 

identify the most effective ML models for UTI diagnosis 

based on real-world clinical data and to integrate these 

models into a practical tool that can support clinicians in 

making more accurate and timely diagnostic decisions. 

The gap this research seeks to fill is multifaceted. 

Firstly, it addresses the need for rigorous, comparative 

analyses of different ML algorithms in the context of 

UTI diagnostics, an area where previous research has 

been somewhat piecemeal. Secondly, it contributes to 

the methodological advancement of ML in healthcare by 

proposing novel approaches to data preprocessing and 

feature engineering, tailored to the unique challenges of 

UTI diagnostic data. Finally, by focusing on the 

operationalization of ML models in clinical settings, this 

study moves beyond theoretical accuracy to assess the 

practical viability and user acceptance of ML-assisted 

diagnostics. 

Our contribution to the field of medical diagnostics and, 

more specifically, to the management of UTIs is 

significant. By demonstrating the superior accuracy of 

ML models over traditional diagnostic approaches, this 

research paves the way for the adoption of AI-driven 

diagnostic tools in clinical practice. Furthermore, the 

development of a practical ML-based diagnostic tool 

represents a concrete step toward the real-world 

application of AI in healthcare, potentially setting a 

precedent for the broader integration of ML in disease 

diagnosis and management. The structure of this article 

unfolds as follows: Section 2 details the materials and 

methods, including the dataset description, ML 

algorithms employed, data preprocessing techniques, 

and model evaluation criteria. Section 3 presents the 

results, offering a comparative analysis of the 

performance of different ML models and discussing the 

implications of these findings for clinical practice. 

Furthermore, we delve into the discussion, interpreting 

the results in the context of existing literature, 

addressing the study's limitations, and suggesting 

directions for future research. Lastly, we conclude the 

article by summarizing the key findings, highlighting 

the contributions of this research to the field, and 

outlining the potential impacts on the diagnosis and 

treatment of UTIs. 

2. Research Method 

In this study, we have embarked on an investigation to 

harness the potential of machine learning (ML) for 

optimizing the diagnosis of Urinary Tract Infections 

(UTIs). Our methodology is anchored in a 

comprehensive dataset, rigorous data preprocessing, and 

the evaluation of various ML algorithms to ascertain 

their diagnostic efficacy. This section elucidates the 

materials and methods employed in our research, 

detailing the dataset's origins, our preprocessing 

techniques, and the ML algorithms we scrutinized. 

2.1. Dataset Acquisition and Description 

The foundation of our study is a dataset meticulously 

collected from a local clinic in Northern Mindanao, 

Philippines, covering the period from April 2020 to 

January 2023 [42]. This dataset is comprised of records 

from patients who underwent urinalysis, a standard 

diagnostic test for UTIs. Each record encapsulates a 

wealth of information, including demographic details 

such as age and gender, alongside urinalysis results that 

span parameters like color, transparency, glucose levels, 

protein presence, pH, specific gravity, white blood cell 

count (WBC), red blood cell count (RBC), epithelial 

cells, mucous threads, amorphous urates, and bacteria 

presence. The dataset is dichotomized into two 

categories based on the diagnosis: UTI positive and UTI 

negative, providing a clear target for our ML models. 

2.2. Data Preprocessing 

Prior to the application of ML algorithms, our dataset 

underwent a series of preprocessing steps, critical for 

refining the data into a format conducive for analysis. 

This process commenced with data cleaning, where 

incomplete records were identified and addressed, 

ensuring the integrity of the dataset. Given the diverse 

nature of the data, especially with variables expressed in 

different formats and scales, normalization and 

encoding were paramount. 

Normalization involved adjusting continuous variables 

like age, pH, and specific gravity to a common scale 

without distorting differences in the ranges of values. 

This was achieved using the MinMaxScaler, which 

transforms the data within a bounded interval. 

Categorical variables, such as gender and urinalysis 

parameters like color and transparency, were encoded to 

numerical values to facilitate their interpretation by the 

ML algorithms. This included both one-hot encoding for 

nominal features and ordinal encoding for ordinal 

features, based on their inherent order or ranking. 

Furthermore, recognizing the imbalance in the dataset 

between UTI positive and negative diagnoses, we 

employed Synthetic Minority Over-sampling Technique 

(SMOTE). This technique generates synthetic samples 

from the minority class, UTI positive in this case, to 

create a balanced dataset, thereby enhancing the model's 

ability to learn from an equal representation of both 

classes. 

2.3. Evaluation of Machine Learning Algorithms 

With a preprocessed and balanced dataset, we proceeded 

to the evaluation of various ML algorithms, each with 

its unique strengths and suitability for binary 

classification problems like UTI diagnosis. The 

algorithms selected for this study encompass a range 

from simple logistic regression, known for its 

interpretability, to more complex models like support 

vector machines (SVM), Random Forest, XGBoost, and 

LightGBM, renowned for their robustness and high 
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performance in a multitude of predictive tasks. 

Additionally, we explored the efficacy of neural 

networks, leveraging the capabilities of deep learning 

for pattern recognition and classification. 

For each algorithm, a detailed parameter tuning was 

conducted using the Optuna framework, an optimization 

software that automates the selection of the best 

hyperparameters to maximize model performance. This 

involved defining a search space for each parameter and 

employing cross-validation to evaluate the model's 

performance under different parameter combinations, 

ensuring the robustness and generalizability of our 

results. 

2.4. Model Evaluation and Selection 

The performance of each ML model was assessed using 

a suite of metrics, including accuracy, precision, recall, 

F1 score, and the area under the Receiver Operating 

Characteristic (ROC) curve. These metrics provided a 

comprehensive view of each model's diagnostic ability, 

considering both the precision of positive predictions 

and the overall rate of correct classifications. The model 

showcasing the best performance across these metrics 

was selected for further analysis and interpretation. 

3.  Result and Discussion 

The results from the Table 1 to Table 3 indicate that the 

Support Vector Machine (SVM), XGBoost, and 

LightGBM algorithms show a range of testing 

accuracies across different hyperparameter settings. In 

this analysis, we can discuss the impact of these 

hyperparameters on the model's performance and draw 

some conclusions based on the data provided. Result for 

SVM test can be seen on Table 1. 

Table  1. SVM Testing Accuracy Results with Hyperparameter 

Tuning Variations 

C Kernel Test Accuracy 

1 Linear 98.25 
1 Poly 97.37 

1 Poly 97.08 

1 RBF 96.49 
10 Linear 98.25 

10 Poly 97.66 

10 Poly 97.66 
10 RBF 96.78 

100 Linear 98.25 

100 RBF 96.78 

From Table 1, we observe that the SVM with a linear 

kernel consistently performs well across different values 

of the penalty parameter C, with the highest test 

accuracy being 98.25%. This suggests that a linear 

decision boundary is sufficient for the dataset used, and 

increasing the complexity of the model with a higher C 

value does not significantly impact the accuracy. The 

poly kernel shows varied results, which might indicate 

overfitting or underfitting depending on the degree of 

the polynomial, while the RBF kernel's performance is 

generally lower compared to the linear kernel, possibly 

due to the nature of the data distribution. Furthermore, 

result for XGBoost test can be seen on Table 2. 

Table 2. XGBoost Testing Accuracy Results with Hyperparameter 

Tuning Variation 

Max Depth Learning Rate n_estimators Test Accuracy 

3 0.1 100 97.37 

4 0.1 100 97.66 

5 0.1 100 97.66 

3 0.01 100 96.78 

3 0.1 200 97.66 

4 0.01 200 96.78 

5 0.05 200 97.95 

3 0.05 300 97.37 

4 0.05 300 97.66 

5 0.01 300 96.78 

Table 2 shows the performance of XGBoost with 

varying max depths, learning rates, and numbers of 

estimators. It is apparent that the model is quite robust 

to changes in the max depth, but there is a slight increase 

in accuracy as the learning rate decreases and the 

number of estimators increases. The best test accuracy 

is 97.95% with a learning rate of 0.05 and 200 

estimators. This could mean that the model benefits 

from more gradual learning, allowing it to generalize 

better. Lastly, LightGBM test can be seen on Table 3. 

Table 3. LightGBM Testing Accuracy Results with Hyperparameter 

Tuning Variation 

Max Depth LR n_estimators TA 

-1 0.1 100 97.37 

10 0.1 100 97.66 

20 0.1 100 97.66 

-1 0.01 100 96.49 

-1 0.1 200 97.95 

10 0.01 200 96.78 

20 0.05 200 97.95 

-1 0.05 300 97.37 

10 0.05 300 97.66 

20 0.01 300 96.78 

Wjere LR is learning rate and TA is test accuracy. In 

Table 3, LightGBM's results are similar to those of 

XGBoost, with the highest accuracy also being 97.95% 

but occurring at a max depth of -1, indicating no limit, 

and with 200 estimators. This could suggest that 

LightGBM handles overfitting well even with a larger 

number of leaves. However, unlike XGBoost, a max 

depth of -1 (no limit) combined with a learning rate of 

0.1 and 100 estimators did not yield the highest 

accuracy, possibly due to a different handling of tree 

complexity and growth strategies between the two 

frameworks.  

The analysis of the results from the tables showcasing 

the performances of SVM, XGBoost, and LightGBM 

models reveals that achieving higher test accuracies is 

closely tied to the careful tuning of hyperparameters. 

This underscores the pivotal role that hyperparameter 

optimization plays in enhancing the efficacy of machine 
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learning models. Particularly noteworthy is the superior 

performance of the SVM with a linear kernel across 

various configurations of the penalty parameter C, 

suggesting that the decision boundary within the data 

may not be overly complex. This could also hint at the 

possibility that the dimensions within the dataset are 

already sufficiently distinct, obviating the need for more 

sophisticated models. 

In the case of both XGBoost and LightGBM, we observe 

that maintaining an equilibrium between the learning 

rate and the number of estimators is instrumental in 

achieving higher accuracy. Optimal performance is not 

necessarily associated with either excessively swift or 

unduly gradual learning rates. Intriguingly, the data 

reveals a potential linear separability, as indicated by the 

highest accuracy achieved by the linear SVM. Despite 

their typical aptitude for handling more intricate 

datasets, the ensemble methods XGBoost and 

LightGBM do not significantly outperform the SVM, 

which could reflect on the dataset's inherent 

characteristics. Furthermore, the consistent performance 

of the models under various hyperparameter conditions 

merits attention. The absence of any notable 

performance degradation suggests that the dataset in 

question may exhibit a degree of robustness to these 

parameters, or that the models are inherently resilient to 

overfitting. Therefore, the selection of an appropriate 

model and its hyperparameters is inherently contingent 

upon the specific traits of the dataset in question. The 

findings suggest that for the dataset at hand, a simpler 

model such as the SVM with a linear kernel is quite 

effective, achieving the highest level of accuracy 

observed. However, it is important to acknowledge that 

XGBoost and LightGBM also demonstrate competitive 

performance, and with judicious hyperparameter tuning, 

there is the potential to equal or even surpass the SVM's 

accuracy.  

4.  Conclusion 

In summary, the empirical evaluation of SVM, 

XGBoost, and LightGBM models across a variety of 

hyperparameter configurations provides valuable 

insights into model selection and tuning in the context 

of the dataset analyzed. The empirical evidence suggests 

that a simpler model, SVM with a linear kernel, achieves 

the most impressive accuracy, indicating that the dataset 

may exhibit a linear separability. This finding 

challenges the often-held belief that more complex 

models invariably lead to better performance and 

underscores the importance of matching model 

complexity to dataset characteristics. While the 

ensemble methods, XGBoost and LightGBM, did not 

significantly surpass the performance of the SVM, their 

competitive accuracies cannot be disregarded. This 

demonstrates their potential effectiveness, especially 

when fine-tuned, which may be crucial for more 

complex or larger datasets where linear models might 

fall short. 
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