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Abstract

Urinary Tract Infections (UTIs) present a significant healthcare challenge due to their prevalence and diagnostic complexity.
Timely and accurate diagnosis is critical for effective treatment, yet traditional methods like microbial cultures and urinalysis
are often slow and inconsistent. This study introduces machine learning (ML) as a transformative solution for UTI diagnostics,
particularly focusing on logistic regression and random forest models renowned for their interpretability and robustness. We
conducted a meticulous hyperparameter tuning process using a rich dataset from a clinic in Northern Mindanao, Philippines,
incorporating demographic, clinical, and urinalysis data. Our research outlines a detailed methodology for applying and refining
these ML models to predict UTI outcomes accurately. Through comprehensive hyperparameter optimization, we enhanced the
predictive performance, demonstrating a significant improvement over standard diagnostic practice. The findings reveal a clear
superiority of the random forest model, achieving a top testing accuracy of 0.9814, compared to the best-performing logistic
regression model's accuracy of 0.7626. This comparative analysis not only validates the efficacy of ML in medical diagnostics
but also emphasizes the potential clinical impact of these models in real-world settings. The study contributes to the burgeoning
literature on ML applications in healthcare by providing a blueprint for optimizing ML models for clinical use, particularly in
diagnosing UTIs. It underscores the promise of ML in augmenting diagnostic precision, thereby potentially reducing the global
healthcare burden associated with UTls.
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validation to ensure maximum accuracy and utility in

1. Introduction real-world settings [19], [20], [21].

Urinary Tract Infections (UTIs) are among the most
common bacterial infections, afflicting individuals
across all age brackets and contributing significantly to
the global healthcare burden [1], [2], [3]. The
complexity of UTI diagnosis, influenced by a broad
spectrum of symptoms and causative pathogens,
underscores the need for more precise, efficient, and
rapid diagnostic methods [4], [5], [6]. While traditional
diagnostic techniques rely on microbial cultures and
urinalysis, these methods often suffer from delays and
variable sensitivity, which can hinder timely and
accurate treatment [7], [8], [9].

The burgeoning field of machine learning (ML) offers
promising tools for revolutionizing UTI diagnostics
[10], [11], [12]. Among the plethora of ML
methodologies, logistic regression and random forest
models stand out for their interpretability, efficiency,
and robust performance across various predictive
modeling tasks [13], [14], [15]. These models can
integrate and analyze complex, multidimensional
datasets, offering insights and predictive capabilities far
beyond traditional statistical approaches [16], [17], [18].
Despite their potential, the optimal application of these
models in UTI diagnostics requires careful tuning and

Recent literature has begun to explore the application of
ML models in diagnosing UTIs, demonstrating their
potential to enhance diagnostic precision and efficiency
[22], [23], [24]. However, a significant gap remains in
the optimization of these models for clinical use. Many
studies fail to thoroughly explore hyperparameter
tuning, a critical process for enhancing model
performance [25], [26], [27]. Moreover, there's a need
for research that not only demonstrates the efficacy of
ML models but also details the methodology for
achieving optimal model configuration, specifically in
the context of UTI diagnostics [28], [29], [30].

This study seeks to fill these gaps by focusing on the
application and meticulous hyperparameter tuning of
logistic regression and random forest models for UTI
diagnosis. Utilizing a comprehensive dataset collected
from a local clinic in Northern Mindanao, Philippines,
this research encompasses a wide array of variables
pertinent to UTI diagnosis, including demographic,
clinical, and urinalysis data [31]. The dataset's richness
allows for a nuanced exploration of model performance
in predicting UTI outcomes, offering a robust testing
ground for our ML models.

Accepted: 22-03-2024 | Revision: 27-03-2024 | Publication: 31-03-2024 | doi: 10.37034/infeb.v6i1.854

246


http://www.infeb.org/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1570413673&&&2019
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id

Gregorius Airlangga

The primary contributions of this research are twofold.
First, we present a detailed methodology for the
application and optimization of logistic regression and
random forest models in UTI diagnostics, highlighting
the importance of hyperparameter tuning in maximizing
model performance. Second, our study provides a
comparative analysis of these models, offering insights
into their relative strengths and limitations in the context
of UTI diagnosis. Through rigorous validation and
optimization, this research aims to advance the practical
application of ML in enhancing diagnostic accuracy for
UTls.

The article is structured to guide the reader through the
entire research process. Following this introduction,
Section 2 elaborates on the materials and methods,
including dataset description, model selection rationale,
and the hyperparameter tuning approach. Section 3
presents the results, showcasing the performance of
logistic regression and random forest models post-
optimization. Finally, Section 4 concludes the article,
summarizing the key insights and contributions.

2. Research Method
2.1 Dataset Description

This study utilizes a comprehensive dataset collected
from a local clinic in Northern Mindanao, Philippines,
spanning from April 2020 to January 2023 [31]. The
dataset comprises patient records associated with
urinalysis tests, crucial for diagnosing Urinary Tract
Infections (UTIs). It includes demographic information
(age and gender), urine physical characteristics (color
and transparency), chemical properties (glucose,
protein, pH, specific gravity), and microscopic
examination findings (white blood cells (WBC), red
blood cells (RBC), epithelial cells, mucous threads,
amorphous urates, and bacteria presence). The target
variable, UTI diagnosis, is binary, indicating the
presence or absence of infection. The dataset's diversity
and comprehensiveness enable the exploration of
machine learning models to predict UTI outcomes
effectively.

2.2 Preprocessing and Feature Engineering

The initial step in the analysis involved filtering
warnings to ensure clarity in presenting the results. Data
preprocessing included handling both nominal and
ordinal features distinctively. The ordinal features, such
as Transparency, Epithelial Cells, Mucous Threads,
Amorphous Urates, Bacteria, Color, Protein, Glucose,
WBC, and RBC, were encoded based on their inherent
order. A custom sorting algorithm was applied to WBC
and RBC features to handle various data representations,
including ranges, greater-than signs, and textual
descriptors like "LOADED" and "TNTC" (Too
Numerous to Count), with a systematic approach to
maintain their ordinality.

Then, Nominal features like Gender were encoded using
One-Hot Encoding to convert categories into a binary
vector format. For the critical features of WBC and
RBC, a novel binning process was employed to manage
the high cardinality stemming from unique values. This
process involved creating bins based on sorted values,
reducing dimensionality while preserving the ordinal
nature and valuable information within these features.

Furthermore, Data normalization, particularly for
continuous  features, was  performed  using
MinMaxScaler, adjusting feature scales to a common
range, enhancing model training efficiency. SMOTE
(Synthetic Minority Over-sampling Technique) was
utilized to address class imbalance, generating synthetic
samples to ensure balanced representation of both
classes in the target variable.

2.3 Model Selection and Rationale

The research focuses on Logistic Regression and
Random Forest models, selected for their robustness,
interpretability, and widespread application in binary
classification problems. Logistic Regression, a linear
model, is chosen for its simplicity and efficacy in
estimating probabilities, providing a solid baseline for
performance comparison. The Random Forest model,
known for handling non-linear relationships and feature
interactions, offers a contrast to Logistic Regression
with its ensemble learning approach, potentially
capturing complex patterns in the data.

2.4 Hyperparameter Tuning Approach

Optuna, an open-source hyperparameter optimization
framework, was employed for tuning the models. This
framework is preferred for its efficiency in searching
through the hyperparameter space using a Bayesian
optimization approach, significantly reducing the
computational expense compared to traditional grid
search methods. Each model underwent a series of 100
trials, with Optuna tasked to maximize the F1-score, a
metric chosen for its balance between precision and
recall, critical in the context of imbalanced datasets like
UTI diagnostics.

The hyperparameter tuning for Logistic Regression
involved optimizing the tolerance for stopping criteria
('tol) and the inverse of regularization strength ('C"),
along with a threshold for classifying positive instances.
For the Random Forest model, the number of trees
('n_estimators'), the maximum depth of the trees
('max_depth"), the number of features to consider for the
best split (‘'max_features'), and the criterion for
measuring the quality of a split (‘criterion’) were tuned.

2.5 Implementation Details

The analysis was implemented using Python, leveraging
libraries such as Pandas for data manipulation, Sklearn
for modeling and preprocessing tools, Imblearn for
oversampling, and Matplotlib and Seaborn for
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visualization. The code was executed in a Google Colab
environment, facilitating access to high computational
resources and a collaborative platform for the research
team.

2.6 Evaluation Metrics

Model performance was primarily evaluated using the
Fl-score, considering the dataset's imbalance.
Additionally, accuracy, recall, precision, and the Area

Under the Receiver Operating Characteristic (ROC
AUC) score were used to provide a comprehensive
assessment of each model's predictive capabilities.

3. Result and Discussion

The top 10 logistic regression models can be seen on
Table 1.

Table 1. Testing Accuracy and Configuration of Hyper Parameters for Logistic Regression

Testing Accuracy C Threshold Tolerance
0.7626 0.6019401452459415 0.28564893809036207 1.1407041351358772e-05
0.7626 0.5797450437266929 0.28884705567532100 2.5915178745198782e-06
0.7626 0.5808107586143879 0.28698585090769957 5.2982956659526150e-06
0.7626 0.5630515096981310 0.28493445329888140 2.5664995486634457e-06
0.7626 0.5128480830956532 0.28791700530780860 2.6381293477262452e-06
0.7626 0.5606516733016459 0.29011186581790477 4.0008549271281250e-06
0.7626 0.5582276602243045 0.28619462227526240 2.6593131170835832e-06
0.7626 0.5592175461842079 0.28300269848793497 2.1474620014371140e-06
0.7626 0.5314887994518090 0.28540356367893030 0.00014829870333910985
0.7626 0.6190594942360033 0.29182946968101540 0.00013316398716669225

The top 10 logistic regression models, as presented in
Table 1, all achieved a testing accuracy of 0.7626. This
uniformity in performance indicates that despite the
variations in hyperparameters, the models were able to
achieve the same level of accuracy on the test set. The
regularization strength (C) among the top logistic
regression models varied, with values ranging from
approximately 0.512 to 0.621, which suggests a level of
robustness against overfitting without significant impact
on the accuracy. The threshold, which is likely related to
the decision function for class separation, shows minor
variations across models, all hovering around 0.28. This
points to a consistent classification boundary being
determined by the logistic regression models.
Furthermore, the tolerance for stopping criteria (tol) had
wider variations, from 1.14e-05 to almost zero, which
did not seem to affect the performance, possibly because
the models converged well before the tolerance
threshold played a role.

On the other hand, the random forest models can be seen
on Table 2.

Table 2. Testing Accuracy and Configuration of Hyper Parameters
for Random Forest

TA  Criterion Max Depth MF N Estimator
0.9814  gini 22 2 111
0.9786 gini 22 2 107
0.9760 gini 24 2 119
0.9759 log_loss 30 2 139
0.9734  gini 30 2 100
0.9731  entropy 23 2 135
0.9707  gini 26 Log2 128
0.9705 log_loss 21 2 112
0.9679 log_loss 18 2 92
0.9676  entropy 25 2 107

Where TA is testing accuracy and MF is max features.
The random forest models showed a range of testing
accuracies from 0.9676 to the best model's accuracy of
0.9814. The variation in accuracy, albeit small, indicates

that the random forest's ensemble approach could
capture more nuances in the data leading to slightly
improved predictions. Then, the best-performing
random forest model used a maximum depth of 22,
which is indicative of the complexity it could handle,
and 111 trees in the ensemble, suggesting a sufficiently
diverse set of learners without becoming excessively
complex. It's noteworthy that all the top models used 2
features when considering the best split, which
demonstrates that only a few features were strong
predictors and necessary for making accurate
predictions. Furthermore, the n_estimators, which
denotes the number of trees in the forest, varied among
the top models, yet the accuracies did not change
drastically, which could mean that beyond a certain
number of trees, the incremental benefit to accuracy
diminishes.

Comparing the two types of models, random forest
outperformed logistic regression, with the best random
forest model achieving an accuracy approximately 2%
higher than the logistic regression models. This
superiority could be due to the random forest's ability to
model non-linear relationships and interactions between
features, which logistic regression might not capture as
effectively. The hyperparameters for random forest
models also displayed a tighter range of values leading
to the top accuracies compared to logistic regression,
suggesting that fine-tuning is more sensitive for random
forest performance. In conclusion, while logistic
regression provided a stable solution, random forest
demonstrated a higher peak performance, possibly
benefiting from its ability to capture more complex
patterns in the data. For future modeling endeavors, one
might consider exploring more granular adjustments in
the random forest's hyperparameters, while for logistic
regression, a focus on feature selection and engineering
might yield better discriminative power.
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4. Conclusion

This investigation into the performance of logistic
regression and random forest models within the sphere
of UTI diagnostics has illuminated the nuanced
capabilities of these machine learning methodologies.
Our findings depict logistic regression as a reliable,
interpretable, and straightforward model, which
achieves a commendable baseline accuracy.
Nonetheless, its performance plateau suggests that,
within the confines of our dataset and the complex
nature of UTI symptoms and pathogens, its capabilities
are near their optimization peak. In contrast, the random
forest model, with its ensemble-based approach, has
demonstrated superior proficiency in managing the
intricacies of the data, achieving notable testing
accuracy. The significant variance in performance due
to hyperparameter adjustments signifies the intricate
dance between model complexity and diagnostic
precision—a balance that is crucial in the medical field
for actionable insights. The study reinforces that the
logistic regression model, despite its transparency, may
be less suited for the multifaceted patterns present in
UTI data, while the random forest model is more adept
at navigating through these complexities, albeit at the
cost of interpretability and increased computational
demand. The choice between these models should be
informed by the specific requirements of the diagnostic
challenge, weighing the trade-offs between simplicity
and performance, interpretability and computational
intensity.

References

[1] Oztirk, R.,, & Murt, A. (2020). Epidemiology of urological
infections: a global burden. World journal of urology, 38, 2669-

2679. https://doi.org/10.1007/s00345-019-03071-4

Akhtar, A., Ahmad Hassali, M. A, Zainal, H., & Khan, A. H.
(2021). A cross-sectional assessment of urinary tract infections
among geriatric patients: prevalence, medication regimen
complexity, and factors associated with  treatment
outcomes. Frontiers in public health, 9, 657199.

[2]

Mancuso, G., Midiri, A., Gerace, E., Marra, M., Zummo, S., &
Biondo, C. (2023). Urinary tract infections: the current scenario
and future prospects. Pathogens, 12(4), 623.
https://doi.org/10.3390/pathogens12040623

Iriya, R., Braswell, B., Mo, M., Zhang, F., Haydel, S. E., &
Wang, S. (2024). Deep Learning-Based Culture-Free Bacteria
Detection in Urine Using Large-Volume
Microscopy. Biosensors, 14(2), 89.
https://doi.org/10.3390/bios14020089

Schinas, G., Dimopoulos, G., & Akinosoglou, K. (2023).
Understanding and implementing diagnostic stewardship: a
guide for resident physicians in the era of antimicrobial
resistance. Microorganisms, 11(9), 2214.
https://doi.org/10.3390/microorganisms11092214

B3]

(4]

[5]

[6] Hasan, J., & Bok, S. (2024). Plasmonic Fluorescence Sensors in
Diagnosis of Infectious Diseases. Biosensors, 14(3), 130.

https://doi.org/10.3390/bios14030130

Jarzembowski, T., & Daca, A. (Eds.). (2024). Advances and
Challenges in Urine Laboratory Analysis.

[71

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Kight, E. C. (2023). Advancements in Point-of-Care Diagnostic
Assays for Non-Invasive Samples in Resource Constrained
Settings (Doctoral dissertation, Vanderbilt University).

Sykes, J. E., Reagan, K. L., Nally, J. E., Galloway, R. L., &
Haake, D. A. (2022). Role of diagnostics in epidemiology,
management, surveillance, and control of
leptospirosis. Pathogens, 11(4), 395.
https://doi.org/10.3390/pathogens11040395

Kumar, Y., Koul, A., Sisodia, P. S., Shafi, J., Kavita, V.,
Gheisari, M., & Davoodi, M. B. (2021). Heart failure detection
using quantum-enhanced machine learning and traditional
machine learning techniques for internet of artificially intelligent
medical things. Wireless Communications and Mobile
Computing, 2021, 1-16. https://doi.org/10.1155/2021/1616725

Tsai, A. Y., Carter, S. R., & Greene, A. C. (2024, January).
Artificial Intelligence in Pediatric Surgery. In Seminars in
Pediatric Surgery (p. 151390). WwB Saunders.
https://doi.org/10.1016/j.sempedsurg.2024.151390

Pachiyannan, P., Alsulami, M., Alsadie, D., Saudagar, A. K. J.,
AlKhathami, M., & Poonia, R. C. (2024). A Novel Machine
Learning-Based Prediction Method for Early Detection and
Diagnosis of Congenital Heart Disease Using ECG Signal
Processing. Technologies, 12(1), 4.
https://doi.org/10.3390/technologies12010004

Efron, B. (2020). Prediction,
attribution. International  Statistical
https://doi.org/10.1111/insr.12409

Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and
machine learning models in credit scoring: A systematic
literature survey. Applied Soft Computing, 91, 106263.
https://doi.org/10.1016/j.as0c.2020.106263

Zhao, B., Song, R., Guo, X., & Yu, L. (2023). Bridging
Interpretability and Performance: Enhanced Machine Learning-
based Prediction of Hematoma Expansion Post-Stroke via
Comprehensive Feature Selection. IEEE Access.
https://doi.org/10.1109/ACCESS.2023.3348244

Rajula, H. S. R., Verlato, G., Manchia, M., Antonucci, N., &
Fanos, V. (2020). Comparison of conventional statistical
methods with machine learning in medicine: diagnosis, drug
development, and treatment. Medicina, 56(9), 455.
https://doi.org/10.3390/medicina56090455

estimation, and
Review, 88, S28-S59.

Shu, X., & Ye, Y. (2023). Knowledge Discovery: Methods from
data mining and machine learning. Social ~ Science
Research, 110, 102817.

https://doi.org/10.1016/j.ssresearch.2022.102817

Mannering, F., Bhat, C. R., Shankar, V., & Abdel-Aty, M.
(2020). Big data, traditional data and the tradeoffs between
prediction and causality in highway-safety analysis. Analytic
methods in accident research, 25, 100113.
https://doi.org/10.1016/j.amar.2020.100113

De Bruyne, S., De Kesel, P., & Oyaert, M. (2023). Applications
of Artificial Intelligence in Urinalysis: Is the Future Already

Here? Clinical Chemistry, 69(12), 1348-1360.
https://doi.org/10.1093/clinchem/hvad136
Caruccio, L., Cirillo, S., Polese, G., Solimando, G.,

Sundaramurthy, S., & Tortora, G. (2024). Can ChatGPT provide
intelligent diagnoses? A comparative study between predictive
models and ChatGPT to define a new medical diagnostic
bot. Expert ~ Systems  with  Applications, 235, 121186.
https://doi.org/10.1016/j.eswa.2023.121186

Cubukeu, H. C., Topcu, D. I., & Yenice, S. (2023). Machine
learning-based clinical decision support using laboratory
data. Clinical Chemistry and Laboratory Medicine (CCLM), (0).
https://doi.org/10.1515/cclm-2023-1037

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 1 (2024) 246-250

249



Gregorius Airlangga

[22]

[23]

[24]

[25]

[26]

Morado, F., & Wong, D. W. (2022). Applying diagnostic
stewardship to proactively optimize the management of urinary
tract infections. Antibiotics, 11(3), 308.
https://doi.org/10.3390/antibiotics11030308

Xu, R., Deebel, N., Casals, R., Dutta, R., & Mirzazadeh, M.
(2021). A new gold rush: a review of current and developing
diagnostic tools for urinary tract infections. Diagnostics, 11(3),
479. https://doi.org/10.3390/diagnostics11030479

Santos, M., Mariz, M., Tiago, l., Martins, J., Alarico, S., &
Ferreira, P. (2022). A review on urinary tract infections

diagnostic methods: Laboratory-based and point-of-care
approaches. Journal of Pharmaceutical and Biomedical
Analysis, 219, 114889.

https://doi.org/10.1016/j.jpba.2022.114889

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors,
S., ... & Lindauer, M. (2023). Hyperparameter optimization:
Foundations, algorithms, best practices, and open
challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2), e1484.
https://doi.org/10.1002/widm.1484

Asif, D., Bibi, M., Arif, M. S., & Mukheimer, A. (2023).
Enhancing heart disease prediction through ensemble learning
techniques with hyperparameter
optimization. Algorithms, 16(6), 308.
https://doi.org/10.3390/a16060308

[27]

(28]

[29]

(30]

(31]

Quinton, F., Presles, B., Leclerc, S., Nodari, G., Lopez, O.,
Chevallier, O., ... & Alberini, J. L. (2024). Navigating the
nuances: comparative analysis and hyperparameter optimisation
of neural architectures on contrast-enhanced MRI for liver and
liver tumour segmentation. Scientific Reports, 14(1), 3522.
https://doi.org/10.1038/s41598-024-53528-9

Naik, N., Talyshinskii, A., Shetty, D. K., Hameed, B. Z,,
Zhankina, R., & Somani, B. K. (2024). Smart Diagnosis of
Urinary Tract Infections: is Artificial Intelligence the Fast-Lane
Solution?. Current Urology Reports, 25(1), 37-47.
https://doi.org/10.1007/s11934-023-01192-3

Anahtar, M. N, Yang, J. H., & Kanjilal, S. (2021). Applications
of machine learning to the problem of antimicrobial resistance:
an emerging model for translational research. Journal of clinical
microbiology, 59(7), 10-1128.
https://doi.org/10.1128/jcm.01260-20

Luz, C. F., Vollmer, M., Decruyenaere, J., Nijsten, M. W.,
Glasner, C., & Sinha, B. (2020). Machine learning in infection
management using routine electronic health records: tools,
techniques, and reporting of future technologies. Clinical
Microbiology and Infection, 26(10), 1291-1299.
https://doi.org/10.1016/j.cmi.2020.02.003

Avarice02. (2024). Urinalysis Test Results Dataset. Kaggle
Dataset. Retrieved from
https://www.kaggle.com/datasets/avarice02/urinalysis-test-
results

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 1 (2024) 246-250

250



