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Abstract  

Urinary Tract Infections (UTIs) present a significant healthcare challenge due to their prevalence and diagnostic complexity. 

Timely and accurate diagnosis is critical for effective treatment, yet traditional methods like microbial cultures and urinalysis 

are often slow and inconsistent. This study introduces machine learning (ML) as a transformative solution for UTI diagnostics, 

particularly focusing on logistic regression and random forest models renowned for their interpretability and robustness. We 

conducted a meticulous hyperparameter tuning process using a rich dataset from a clinic in Northern Mindanao, Philippines, 

incorporating demographic, clinical, and urinalysis data. Our research outlines a detailed methodology for applying and refining 

these ML models to predict UTI outcomes accurately. Through comprehensive hyperparameter optimization, we enhanced the 

predictive performance, demonstrating a significant improvement over standard diagnostic practice. The findings reveal a clear 

superiority of the random forest model, achieving a top testing accuracy of 0.9814, compared to the best-performing logistic 

regression model's accuracy of 0.7626. This comparative analysis not only validates the efficacy of ML in medical diagnostics 

but also emphasizes the potential clinical impact of these models in real-world settings. The study contributes to the burgeoning 

literature on ML applications in healthcare by providing a blueprint for optimizing ML models for clinical use, particularly in 

diagnosing UTIs. It underscores the promise of ML in augmenting diagnostic precision, thereby potentially reducing the global 

healthcare burden associated with UTIs. 
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1. Introduction 

Urinary Tract Infections (UTIs) are among the most 

common bacterial infections, afflicting individuals 

across all age brackets and contributing significantly to 

the global healthcare burden [1], [2], [3]. The 

complexity of UTI diagnosis, influenced by a broad 

spectrum of symptoms and causative pathogens, 

underscores the need for more precise, efficient, and 

rapid diagnostic methods [4], [5], [6]. While traditional 

diagnostic techniques rely on microbial cultures and 

urinalysis, these methods often suffer from delays and 

variable sensitivity, which can hinder timely and 

accurate treatment [7], [8], [9]. 

The burgeoning field of machine learning (ML) offers 

promising tools for revolutionizing UTI diagnostics 

[10], [11], [12]. Among the plethora of ML 

methodologies, logistic regression and random forest 

models stand out for their interpretability, efficiency, 

and robust performance across various predictive 

modeling tasks [13], [14], [15]. These models can 

integrate and analyze complex, multidimensional 

datasets, offering insights and predictive capabilities far 

beyond traditional statistical approaches [16], [17], [18]. 

Despite their potential, the optimal application of these 

models in UTI diagnostics requires careful tuning and 

validation to ensure maximum accuracy and utility in 

real-world settings [19], [20], [21]. 

Recent literature has begun to explore the application of 

ML models in diagnosing UTIs, demonstrating their 

potential to enhance diagnostic precision and efficiency 

[22], [23], [24]. However, a significant gap remains in 

the optimization of these models for clinical use. Many 

studies fail to thoroughly explore hyperparameter 

tuning, a critical process for enhancing model 

performance [25], [26], [27]. Moreover, there's a need 

for research that not only demonstrates the efficacy of 

ML models but also details the methodology for 

achieving optimal model configuration, specifically in 

the context of UTI diagnostics [28], [29], [30]. 

This study seeks to fill these gaps by focusing on the 

application and meticulous hyperparameter tuning of 

logistic regression and random forest models for UTI 

diagnosis. Utilizing a comprehensive dataset collected 

from a local clinic in Northern Mindanao, Philippines, 

this research encompasses a wide array of variables 

pertinent to UTI diagnosis, including demographic, 

clinical, and urinalysis data [31]. The dataset's richness 

allows for a nuanced exploration of model performance 

in predicting UTI outcomes, offering a robust testing 

ground for our ML models. 
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The primary contributions of this research are twofold. 

First, we present a detailed methodology for the 

application and optimization of logistic regression and 

random forest models in UTI diagnostics, highlighting 

the importance of hyperparameter tuning in maximizing 

model performance. Second, our study provides a 

comparative analysis of these models, offering insights 

into their relative strengths and limitations in the context 

of UTI diagnosis. Through rigorous validation and 

optimization, this research aims to advance the practical 

application of ML in enhancing diagnostic accuracy for 

UTIs. 

The article is structured to guide the reader through the 

entire research process. Following this introduction, 

Section 2 elaborates on the materials and methods, 

including dataset description, model selection rationale, 

and the hyperparameter tuning approach. Section 3 

presents the results, showcasing the performance of 

logistic regression and random forest models post-

optimization. Finally, Section 4 concludes the article, 

summarizing the key insights and contributions. 

2. Research Method 

2.1 Dataset Description 

This study utilizes a comprehensive dataset collected 

from a local clinic in Northern Mindanao, Philippines, 

spanning from April 2020 to January 2023 [31]. The 

dataset comprises patient records associated with 

urinalysis tests, crucial for diagnosing Urinary Tract 

Infections (UTIs). It includes demographic information 

(age and gender), urine physical characteristics (color 

and transparency), chemical properties (glucose, 

protein, pH, specific gravity), and microscopic 

examination findings (white blood cells (WBC), red 

blood cells (RBC), epithelial cells, mucous threads, 

amorphous urates, and bacteria presence). The target 

variable, UTI diagnosis, is binary, indicating the 

presence or absence of infection. The dataset's diversity 

and comprehensiveness enable the exploration of 

machine learning models to predict UTI outcomes 

effectively. 

2.2 Preprocessing and Feature Engineering 

The initial step in the analysis involved filtering 

warnings to ensure clarity in presenting the results. Data 

preprocessing included handling both nominal and 

ordinal features distinctively. The ordinal features, such 

as Transparency, Epithelial Cells, Mucous Threads, 

Amorphous Urates, Bacteria, Color, Protein, Glucose, 

WBC, and RBC, were encoded based on their inherent 

order. A custom sorting algorithm was applied to WBC 

and RBC features to handle various data representations, 

including ranges, greater-than signs, and textual 

descriptors like "LOADED" and "TNTC" (Too 

Numerous to Count), with a systematic approach to 

maintain their ordinality.  

Then, Nominal features like Gender were encoded using 

One-Hot Encoding to convert categories into a binary 

vector format. For the critical features of WBC and 

RBC, a novel binning process was employed to manage 

the high cardinality stemming from unique values. This 

process involved creating bins based on sorted values, 

reducing dimensionality while preserving the ordinal 

nature and valuable information within these features. 

Furthermore, Data normalization, particularly for 

continuous features, was performed using 

MinMaxScaler, adjusting feature scales to a common 

range, enhancing model training efficiency. SMOTE 

(Synthetic Minority Over-sampling Technique) was 

utilized to address class imbalance, generating synthetic 

samples to ensure balanced representation of both 

classes in the target variable. 

2.3 Model Selection and Rationale 

The research focuses on Logistic Regression and 

Random Forest models, selected for their robustness, 

interpretability, and widespread application in binary 

classification problems. Logistic Regression, a linear 

model, is chosen for its simplicity and efficacy in 

estimating probabilities, providing a solid baseline for 

performance comparison. The Random Forest model, 

known for handling non-linear relationships and feature 

interactions, offers a contrast to Logistic Regression 

with its ensemble learning approach, potentially 

capturing complex patterns in the data. 

2.4 Hyperparameter Tuning Approach 

Optuna, an open-source hyperparameter optimization 

framework, was employed for tuning the models. This 

framework is preferred for its efficiency in searching 

through the hyperparameter space using a Bayesian 

optimization approach, significantly reducing the 

computational expense compared to traditional grid 

search methods. Each model underwent a series of 100 

trials, with Optuna tasked to maximize the F1-score, a 

metric chosen for its balance between precision and 

recall, critical in the context of imbalanced datasets like 

UTI diagnostics. 

The hyperparameter tuning for Logistic Regression 

involved optimizing the tolerance for stopping criteria 

('tol') and the inverse of regularization strength ('C'), 

along with a threshold for classifying positive instances. 

For the Random Forest model, the number of trees 

('n_estimators'), the maximum depth of the trees 

('max_depth'), the number of features to consider for the 

best split ('max_features'), and the criterion for 

measuring the quality of a split ('criterion') were tuned. 

2.5 Implementation Details 

The analysis was implemented using Python, leveraging 

libraries such as Pandas for data manipulation, Sklearn 

for modeling and preprocessing tools, Imblearn for 

oversampling, and Matplotlib and Seaborn for 
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visualization. The code was executed in a Google Colab 

environment, facilitating access to high computational 

resources and a collaborative platform for the research 

team. 

2.6 Evaluation Metrics 

Model performance was primarily evaluated using the 

F1-score, considering the dataset's imbalance. 

Additionally, accuracy, recall, precision, and the Area 

Under the Receiver Operating Characteristic (ROC 

AUC) score were used to provide a comprehensive 

assessment of each model's predictive capabilities. 

3.  Result and Discussion 

The top 10 logistic regression models can be seen on 

Table 1. 

Table  1. Testing Accuracy and Configuration of Hyper Parameters for Logistic Regression 

Testing Accuracy C Threshold Tolerance 

0.7626 0.6019401452459415 0.28564893809036207 1.1407041351358772e-05 

0.7626 0.5797450437266929 0.28884705567532100 2.5915178745198782e-06 
0.7626 0.5808107586143879 0.28698585090769957 5.2982956659526150e-06 

0.7626 0.5630515096981310 0.28493445329888140 2.5664995486634457e-06 

0.7626 0.5128480830956532 0.28791700530780860 2.6381293477262452e-06 
0.7626 0.5606516733016459 0.29011186581790477 4.0008549271281250e-06 

0.7626 0.5582276602243045 0.28619462227526240 2.6593131170835832e-06 

0.7626 0.5592175461842079 0.28300269848793497 2.1474620014371140e-06 
0.7626 0.5314887994518090 0.28540356367893030 0.00014829870333910985 

0.7626 0.6190594942360033 0.29182946968101540 0.00013316398716669225 

The top 10 logistic regression models, as presented in 

Table 1, all achieved a testing accuracy of 0.7626. This 

uniformity in performance indicates that despite the 

variations in hyperparameters, the models were able to 

achieve the same level of accuracy on the test set. The 

regularization strength (C) among the top logistic 

regression models varied, with values ranging from 

approximately 0.512 to 0.621, which suggests a level of 

robustness against overfitting without significant impact 

on the accuracy. The threshold, which is likely related to 

the decision function for class separation, shows minor 

variations across models, all hovering around 0.28. This 

points to a consistent classification boundary being 

determined by the logistic regression models. 

Furthermore, the tolerance for stopping criteria (tol) had 

wider variations, from 1.14e-05 to almost zero, which 

did not seem to affect the performance, possibly because 

the models converged well before the tolerance 

threshold played a role.  

On the other hand, the random forest models can be seen 

on Table 2. 

Table 2. Testing Accuracy and Configuration of Hyper Parameters 

for Random Forest 

TA Criterion Max Depth MF N Estimator 

0.9814 gini 22 2 111 

0.9786 gini 22 2 107 

0.9760 gini 24 2 119 

0.9759 log_loss 30 2 139 
0.9734 gini 30 2 100 

0.9731 entropy 23 2 135 

0.9707 gini 26 Log2 128 
0.9705 log_loss 21 2 112 

0.9679 log_loss 18 2 92 

0.9676 entropy 25 2 107 

Where TA is testing accuracy and MF is max features. 

The random forest models showed a range of testing 

accuracies from 0.9676 to the best model's accuracy of 

0.9814. The variation in accuracy, albeit small, indicates 

that the random forest's ensemble approach could 

capture more nuances in the data leading to slightly 

improved predictions. Then, the best-performing 

random forest model used a maximum depth of 22, 

which is indicative of the complexity it could handle, 

and 111 trees in the ensemble, suggesting a sufficiently 

diverse set of learners without becoming excessively 

complex. It's noteworthy that all the top models used 2 

features when considering the best split, which 

demonstrates that only a few features were strong 

predictors and necessary for making accurate 

predictions. Furthermore, the n_estimators, which 

denotes the number of trees in the forest, varied among 

the top models, yet the accuracies did not change 

drastically, which could mean that beyond a certain 

number of trees, the incremental benefit to accuracy 

diminishes.  

Comparing the two types of models, random forest 

outperformed logistic regression, with the best random 

forest model achieving an accuracy approximately 2% 

higher than the logistic regression models. This 

superiority could be due to the random forest's ability to 

model non-linear relationships and interactions between 

features, which logistic regression might not capture as 

effectively. The hyperparameters for random forest 

models also displayed a tighter range of values leading 

to the top accuracies compared to logistic regression, 

suggesting that fine-tuning is more sensitive for random 

forest performance. In conclusion, while logistic 

regression provided a stable solution, random forest 

demonstrated a higher peak performance, possibly 

benefiting from its ability to capture more complex 

patterns in the data. For future modeling endeavors, one 

might consider exploring more granular adjustments in 

the random forest's hyperparameters, while for logistic 

regression, a focus on feature selection and engineering 

might yield better discriminative power.  
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4.  Conclusion 

This investigation into the performance of logistic 

regression and random forest models within the sphere 

of UTI diagnostics has illuminated the nuanced 

capabilities of these machine learning methodologies. 

Our findings depict logistic regression as a reliable, 

interpretable, and straightforward model, which 

achieves a commendable baseline accuracy. 

Nonetheless, its performance plateau suggests that, 

within the confines of our dataset and the complex 

nature of UTI symptoms and pathogens, its capabilities 

are near their optimization peak. In contrast, the random 

forest model, with its ensemble-based approach, has 

demonstrated superior proficiency in managing the 

intricacies of the data, achieving notable testing 

accuracy. The significant variance in performance due 

to hyperparameter adjustments signifies the intricate 

dance between model complexity and diagnostic 

precision—a balance that is crucial in the medical field 

for actionable insights. The study reinforces that the 

logistic regression model, despite its transparency, may 

be less suited for the multifaceted patterns present in 

UTI data, while the random forest model is more adept 

at navigating through these complexities, albeit at the 

cost of interpretability and increased computational 

demand. The choice between these models should be 

informed by the specific requirements of the diagnostic 

challenge, weighing the trade-offs between simplicity 

and performance, interpretability and computational 

intensity. 
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