

Accepted: 05-01-2024 | Revision: 09-01-2024 | Publication: 31-03-2024 | doi: 10.37034/infeb.v6i1.795

38

Jurnal Informatika Ekonomi Bisnis

http:/ /www.infeb.org

2024 Vol. 6 Iss . 1 Hal: 38-46 e-ISSN: 2714-8491

Analysis and Comparison of Machine Learning Techniques for DDoS

Attack Classification in Network Environments

Gregorius Airlangga1

1Atma Jaya Catholic University of Indonesia

 gregorius.airlangga@atmajaya.ac.id

Abstract

This research presents a comparative analysis of machine learning techniques for classifying Distributed Denial of Service

(DDoS) attacks within network traffic. We evaluated the performance of three algorithms: Logistic Regression, Decision Tree,

and Random Forest, including their scaled-feature counterparts. The study utilized a robust methodology incorporating

advanced data preprocessing, feature engineering, and Synthetic Minority Over-sampling Technique (SMOTE) to address class

imbalance. The models were rigorously tested using a cross-validation framework, assessing their accuracy, precision, recall,

and F1 score. Results indicated that the Random Forest algorithm outperformed the others, demonstrating superior predictive

accuracy and consistency, albeit with higher computational costs. Logistic Regression, when feature-scaled, showed significant

improvement in performance, highlighting the importance of data normalization in models sensitive to feature scaling. Decision

Trees provided a quick and interpretable model, though slightly less accurate than the Random Forest. The research findings

highlight the trade-offs between predictive performance and computational efficiency in selecting machine learning models for

cybersecurity applications. The study contributes to the cybersecurity domain by elucidating the efficacy of ensemble

techniques in DDoS attack classification and underscores the potential for model improvement through scaling and data

balancing.

Keywords: DDoS Attack, Machine Learning, Logistic Regression, Decision Trees, Random Forest.

INFEB is licensed under a Creative Commons 4.0 International License.

1. Introduction

As the digital landscape continues to evolve,

cybersecurity threats like Distributed Denial of Service

(DDoS) attacks are becoming increasingly sophisticated

and damaging [1], [2], [3]. These attacks disrupt

essential online services by flooding networks with

excessive traffic, posing significant threats to the

stability and security of digital infrastructures [4], [5],

[6]. The complexity and dynamic nature of these attacks

necessitate advanced detection and mitigation strategies

[7], [8], [9]. This research is situated within this context,

aiming to enhance the detection and classification of

DDoS attacks using innovative machine learning

approaches. The literature on DDoS attack detection is

vast and diverse. Studies such as those who explored

various machine learning techniques for network

anomaly detection, providing valuable insights but often

limited by static modeling approaches [10], [11], [12].

Another research emphasized the potential of deep

learning methods, yet these require extensive

computational resources and large datasets [13]. On the

other hand, another work investigated classical machine

learning models, highlighting their efficiency but

pointing out their limitations in handling complex and

high-dimensional data typical in network traffic [14].

Furthermore, the work from other source on the issue of

imbalanced datasets prevalent in network security,

proposing various sampling techniques to enhance

model performance [15].

The current state of the art incorporates a range of

techniques, from traditional machine learning models to

more recent deep learning frameworks [16], [17].

Despite the progress, there remains a crucial gap in

comprehensively comparing the effectiveness of

different machine learning models, particularly in the

context of DDoS attack classification. Many studies

focus on a single model or a specific aspect of the

classification problem, lacking a holistic approach that

considers various models under uniform experimental

conditions.

Addressing this gap, our research makes several key

contributions, firstly is an extensive data preprocessing

and feature engineering, in this process, we apply a

series of advanced data preprocessing techniques to

refine the network traffic data, ensuring high-quality

inputs for model training. Additionally, our unique

feature engineering strategy enhances the models'

capacity to distinguish between normal traffic and

DDoS attacks. Secondly, by implementing diverse

machine learning models. This process is a central

aspect of our study to do comparative analysis of three

widely used machine learning models: Logistic

Regression, Decision Trees, and Random Forest. This

comparison provides a comprehensive view of their

performance in the context of DDoS attack

classification.

We also employ PCA for effective dimensionality

reduction, allowing us to manage the complex nature of

http://www.infeb.org/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1570413673&&&2019
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

39

network data. Simultaneously, our use of SMOTE

addresses the challenge of class imbalance, a common

issue in network security datasets [18], [19], [20]. To do

In-depth comparative evaluation, the evaluation method

involves a rigorous analysis of the models based on

accuracy, precision, recall, and F1 score. This thorough

comparative study helps in identifying the most

effective model under various scenarios, contributing

significantly to the field of network security. This

study's implications extend beyond the immediate realm

of DDoS attack classification. By providing a detailed

comparison of different machine learning models, our

research contributes to the broader understanding of

their applicability in cybersecurity. The methodologies

and insights gained can be applied to other areas of

network security, potentially aiding in the development

of more robust and adaptable defense mechanisms.

Furthermore, our work sets a foundation for future

research, encouraging further exploration into the

comparative analysis of machine learning models in

cybersecurity.

2. Research Method

2.1 Data Collection and Preprocessing

The dataset used in this study was sourced from Kaggle,

specifically designed to contain network logs pertinent

to DDoS attacks. The 'DDoS Attack Network Logs'

dataset comprises various network attributes that are key

to discerning traffic patterns indicative of attacks. The

initial step involved loading the dataset using the

ArffLoader function, tailored for handling the ARFF

(Attribute-Relation File Format) commonly utilized in

machine learning datasets.

Furthermore, we create dataframe creation in order to do

post-loading, the data was structured into a Pandas

DataFrame. This format is conducive for data

manipulation in Python, offering a wide array of

functionalities for data analysis. After that, we create

feature-target separation, in this process, the dataset was

bifurcated into feature columns ('df_X') and a target

column ('df_target'). This separation is a cornerstone of

supervised learning, where the model learns to predict

the target variable from the features.

Furthermore, data encoding is implemented, the dataset

contained byte sequences which were converted to

strings for uniformity and ease of processing. This

encoding step is crucial for handling categorical data in

subsequent analysis. Then, specific columns were cast

to integer and object types to maintain consistency with

Python’s data processing libraries. We also conducted a

thorough check for missing values and duplicate entries

to ensure data integrity. Handling missing values is vital

to prevent inaccuracies during model training.

2.2 Feature Engineering

Feature engineering is a pivotal step where domain

knowledge is leveraged to extract and optimize features

from raw data. Firstly, categorical data handling, in this

process, the categorical values in the 'FLAGS' column

were replaced with numerical codes, as most machine

learning algorithms necessitate numerical inputs.

Secondly, one-hot encoding, this technique was

employed to process categorical variables, converting

them into a format amenable to machine learning

algorithms, thus aiding in improving model accuracy.

Thirdly is logarithmic transformation, this process is

important to address data skewness, logarithmic

transformations were applied to various packet-related

features. This approach is often effective in normalizing

data distributions, enhancing the performance of

learning algorithms.

2.3 Dimensionality Reduction and Class Imbalance

Handling

PCA (Principal Component Analysis) was employed to

mitigate the challenge of high-dimensional data. PCA

reduces the dimensionality while retaining most of the

data variance, aiding in simplifying the dataset. To

address the class imbalance prevalent in network

security datasets, SMOTE (Synthetic Minority Over-

sampling Technique) was utilized. This technique

synthesizes new samples from the minority class,

balancing the dataset for training.

2.4 Model Implementation

In the model implementation phase of our research, we

dedicated our efforts to the deployment of three distinct

machine learning algorithms, each chosen for their

relevance and potential in addressing the classification

challenges posed by DDoS attack detection in network

traffic data. Logistic Regression was the first of the three

models we implemented. As a probabilistic linear

classifier, Logistic Regression is traditionally prized for

its simplicity and interpretability. In our

implementation, we adapted the model to handle the

binary classification task by modeling the log-odds of

the probability of an attack as a linear combination of

the input features. This required careful consideration of

the feature space and the relationships between the

features and the probability of an attack to ensure that

the logistic function's output could be effectively

threshold to distinguish between the two classes of

interest.

Decision Trees were selected for their intuitive

representation of decision-making processes, mirroring

the if-then-else decision rules that can be readily

understood. To implement the Decision Tree, we

constructed a flowchart-like structure that recursively

split the data into homogenous subsets. This was

achieved by identifying the features that resulted in the

most significant reduction in a given impurity measure

(such as Gini impurity or entropy) at each node. Given

the diverse nature of network traffic data, the Decision

Tree was fine-tuned to prevent overfitting while

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

40

maintaining sufficient complexity to capture the

underlying patterns indicative of DDoS attacks.

Random Forest was the final model we implemented,

chosen for its robustness and accuracy resulting from its

ensemble approach. By integrating multiple Decision

Trees, each trained on a different subset of the data and

features, the Random Forest model mitigates the

overfitting tendencies of individual trees. In our study,

the Random Forest model was composed of numerous

trees whose predictions were aggregated through

majority voting for classification. We adjusted the

number of trees and the depth of each tree to optimize

the trade-off between model bias and variance, ensuring

that the model captured the essential characteristics of

the data without being swayed by noise.

Each model was implemented with a particular

emphasis on optimizing for the idiosyncrasies of our

dataset, which included an imbalance between the

classes and a wide range of feature scales. We employed

techniques such as feature scaling and class weighting

to tailor each model to the dataset's specific

characteristics and requirements. Through rigorous

hyperparameter tuning and validation, we ensured that

each model achieved a high level of performance while

avoiding the pitfalls of overfitting or underfitting. The

outcome of this careful implementation was a set of

models that were well-suited to our data and capable of

providing insights into the nature of DDoS attacks

within network traffic.

2.5 Evaluation Metrics and Procedures

Model evaluation was conducted using cross-validation,

a robust technique for assessing model performance on

unseen data. We employed a range of metrics, including

accuracy, precision, recall, and F1 score, to

comprehensively evaluate each model. For categorical

variables, one-hot encoding transforms a categorical

variable with 'n' categories into 'n' binary features, each

representing one category. For a category 'c', the feature

corresponding to 'c' is 1, and all other features are 0.

For a variable x, the logarithmic transformation is given

by, y = log(x), where 'log' is the natural logarithm. This

is applied to skewed features to normalize their

distribution. Furthermore, PCA involves the

computation of the eigenvalue decomposition of a data

covariance matrix or singular value decomposition of a

data matrix, usually after mean centering the data for

each attribute. The principal components are the

eigenvectors of this covariance matrix. In order to

measure effectiveness of the algorithm we used four

metrics: accuracy, precision, recall and F1, these are

described in the Equation (1-4).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (3)

𝐹1 =
2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4)

Where TP is a True Positives, TN is a True Negatives,

FP is a False Positives and FN is a False Negatives.

2.6 Logistic Regression

Logistic Regression is commonly used for binary

classification problems. It models the probability of a

binary outcome using the logistic function as presented

in the Equation (5).

𝑃(𝑦=1) =
1

(1 + 𝑒−(β0+β1∗x1+⋯+β𝑛∗𝑥𝑛))
 (5)

Where P(y=1) is the probability of the dependent variable

equaling a '1', e is the base of natural logarithms, β0, β1,

..., βn are the regression coefficients and x1, x2, ..., xn are

the feature variables.

2.7 Decision Tree

Decision Trees are a non-parametric supervised learning

method used for classification and regression. The tree

structure represents decisions based on feature values. A

decision tree splits the data into subsets based on the

value of input features. This splitting is repeated

recursively, forming a tree structure. Commonly used

metrics for determining splits are Gini Impurity and

Information Gain (Entropy). These concepts is

described in the Equation (6-7).

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑘)2

𝑁

𝑘=1

 (6)

𝐻(𝑆) = − ∑ 𝑝𝑘𝑙𝑜𝑔2(𝑝𝑘)

𝑁

𝑘=1

 (7)

Where pₖ is the proportion of samples that belong to

class k in the set S.

2.8 Random Forest

Random Forest is an ensemble learning method for

classification and regression, which operates by

constructing a multitude of decision trees at training

time. The output of the Random Forest is determined by

the aggregate of the predictions made by individual

trees. Random Forest employs a technique known as

Bootstrap Aggregating or Bagging. This method

involves creating multiple subsets of the original dataset

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

41

with replacement, known as bootstrap samples. Each

tree in the Random Forest is trained on one of these

bootstrap samples. Mathematically, given a dataset D of

size N, a bootstrap sample is a subset Dᵢ (also of size N)

sampled with replacement from D. This process is

repeated to create as many datasets as there are trees in

the forest.

Each decision tree in the Random Forest is constructed

using a subset of features chosen at random at each split.

If there are M features, a number m (where m << M) is

specified such that at each split in the tree, m features

are selected at random out of the M and the best split on

these m is used to split the node. The value of m is

constant during the forest growing.

For regression, the prediction of the Random Forest is

given by averaging the predictions of all the individual

trees. Mathematically, if h(x, Θᵢ) is the prediction of the

i-th tree, then the Random Forest prediction, H(x), for a

given input x is described in the Equation (8).

𝐻(𝑥) =
1

𝑁
∑ ℎ(𝑥𝑖 , 𝛩𝑖)

𝑁

𝑖=1

 (8)

Where N is the number of trees, and Θᵢ represents the

parameters of the i-th tree. For classification, the output

is the class selected by most trees (majority voting).

Each tree gives a 'vote' for a class, and the class with the

most votes is chosen as the final prediction.

3. Result and Discussion

Figure 1-3 appear to be a set of boxplots comparing the

performance metrics of three different machine learning

models: Logistic Regression, Decision Tree, and

Random Forest. Each boxplot shows the distribution of

a specific metric (accuracy, precision, recall, F1 score)

across multiple runs of the model.

Figure 1. Logistic Regression Result

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

42

Figure 1. Decision Tree Result

Figure 3. Random Forest Result

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

43

Logistic Regression appears as the first set of boxplots.

Logistic Regression is a statistical model that, in this

context, predicts the probability of a binary outcome.

The boxplots indicate that accuracy has a median around

0.92, suggesting that, on average, the model correctly

predicts the outcome 92% of the time. However, there is

notable variability in the accuracy, as evidenced by

outliers. These outliers could indicate cases where the

model's performance deviated significantly from the

median. Precision and recall both have medians close to

0.90. Precision measures the model's accuracy in

predicting positive labels, while recall assesses how well

the model captures actual positive instances. The

similarity of these medians suggests a balanced trade-off

between these two metrics. The F1 score, which

harmonizes precision and recall into a single metric,

reflects this balance with a similar median. When we

consider the scaled variants of these metrics (indicated

with an "_SC" suffix), the median values are slightly

higher, and the interquartile ranges (IQRs) are tighter.

This indicates an improvement in model performance

when feature scaling is applied, which is common with

Logistic Regression as it can be sensitive to the scale of

input variables.

Moving to the Decision Tree model, the boxplots

demonstrate a consistently high median performance

across all metrics, with accuracy peaking around 0.95.

This suggests that the Decision Tree model, which

works by partitioning the data into subsets based on

feature value thresholds, is highly effective at

classification in this case. The high precision and recall

indicate that the Decision Tree makes accurate

predictions and is good at capturing the majority of the

relevant cases. Notably, there is minimal variation in

performance with scaling, as the boxplots for the scaled

and unscaled metrics are closely aligned. This is

indicative of the Decision Tree model's robustness to

feature scaling, as it does not rely on distance

calculations that can be affected by the scale of the data.

Lastly, the Random Forest model, which is an ensemble

of Decision Trees, shows the highest median scores and

the least variability among the three models. The

Random Forest boxplots show medians around 0.96 for

accuracy, 0.95 for precision, and similarly high for recall

and F1 score. The tight IQRs across these metrics

suggest that the Random Forest model is not only

accurate but also consistent in its predictions across

different iterations. This is typical of Random Forests,

which tend to perform well on a variety of datasets by

reducing overfitting through averaging the predictions

of multiple trees. Similar to the Decision Tree, the

Random Forest model does not show significant

changes in performance with feature scaling.

Random Forest appears to be the best performing model

among the three, with the highest median values and

tightest IQRs for all metrics, which indicates not only

high performance but also consistency across runs.

Decision Tree shows very high performance as well but

with a slight decrease compared to Random Forest.

Logistic Regression has the lowest median scores

among the three models. However, the performance

improves with feature scaling, which indicates that

Logistic Regression is more sensitive to the scale of the

data. Scaling does not significantly impact the

performance of Decision Trees and Random Forests,

which might be due to these models' intrinsic handling

of feature scales. Outliers in the boxplots suggest that

there are runs where the models either significantly

overperform or underperform compared to the median,

which could be due to the variability in the data or the

randomness in the training process. Computation Time

of Models can be seen on Figure 4.

Figure 4. Computation Time of Models

In terms of computational efficiency, Logistic

Regression is the fastest, with times ranging from

approximately 6.85 to 8.53 seconds. The Decision Tree

model is comparably fast, with times around 2.70 to 3.71

seconds. The Random Forest model, however, takes

considerably longer, ranging from about 44.90 to 48.95

seconds, which is expected given that it builds multiple

trees and combines their results. While the Random

Forest model outperforms the other two in terms of

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

44

predictive metrics, it requires significantly more

computational time, which might be a consideration in

practical applications. Logistic Regression, after

scaling, shows improved performance, and its quick

computation makes it an attractive model for situations

where speed is a critical factor. Decision Trees offer a

good balance between speed and performance, with

feature scaling not significantly affecting its results. The

choice between these models would ultimately depend

on the specific requirements of the application,

including the acceptable trade-off between accuracy and

computational resources. Test harness result can be seen

on Figure 5.

Figure 5. Test Harness

As presented in the Figure 5, The logs indicate multiple

runs of a Logistic Regression model, with and without

feature scaling (denoted as LOGI_SC). The times

recorded for these runs show that the model takes, on

average, about 8 seconds to complete the test harness

function. Logistic Regression is a foundational machine

learning algorithm that models the probability of a

binary outcome. It is generally favored for its simplicity

and efficiency, especially in cases where the relationship

between the independent variables and the binary

outcome is approximately linear. The scaled version

(LOGI_SC) implies that the data has been standardized

or normalized to improve the model's performance,

which can be particularly beneficial for Logistic

Regression as it relies on the optimization of a loss

function that can converge faster when features are on

the same scale. Decision Trees are recorded next, also

both in scaled (DCT_SC) and unscaled forms. These

models are significantly faster, completing the test

harness in roughly 2.7 seconds. This efficiency stems

from the Decision Tree's flowchart-like structure, where

binary decisions are made at each node, leading to a final

classification at the leaves. Decision Trees are highly

interpretable and do not require feature scaling, which is

consistent with the similar execution times observed for

DCT and DCT_SC. Finally, the Random Forest models,

which are ensembles of Decision Trees, show a much

higher execution time, averaging around 48 seconds.

This substantial increase in time is expected due to the

complexity of Random Forest, which builds multiple

Decision Trees on various sub-samples of the dataset

and averages their predictions. The nature of this

algorithm makes it robust to overfitting and generally

more accurate than a single Decision Tree, at the cost of

increased computational complexity. Similar to

Decision Trees, Random Forests do not inherently

benefit from feature scaling (RFC_SC), as evidenced by

the consistent execution times regardless of scaling.

In terms of the test harness function itself, the usage of

cross-validation (CV) with five folds suggests a robust

evaluation methodology. In CV, the dataset is split into

five parts, and the model is trained and tested five times,

with each part being used as the test set once. This

method provides a thorough assessment of the model's

performance and generalizability to new data. From

these execution times, one can infer that while Logistic

Regression and Decision Trees are quicker to train and

evaluate, Random Forests take a considerably longer

time. This trade-off between time and predictive

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

45

performance is a common consideration in machine

learning. Practitioners must decide whether the

improvement in prediction accuracy with Random

Forest is worth the additional computation time, which

may be a critical factor in real-time applications or when

working with very large datasets. The information from

the test_harness function is valuable for understanding

not only the performance of the models but also the

computational demands they place on the system. Such

insights are crucial when it comes to selecting the right

model for deployment in production environments,

where both accuracy and efficiency need to be balanced

according to the application's requirements.

4. Conclusion

Our findings reveal a nuanced landscape of model

efficacy and computational efficiency. The Logistic

Regression model demonstrated admirable predictive

performance, particularly when feature scaling was

applied, suggesting its utility in scenarios where model

interpretability and operational speed are paramount.

The Decision Tree model offered a compelling balance

between speed and performance, reinforcing its

reputation as a versatile and interpretable classifier.

However, it was the Random Forest model that emerged

as the superior performer in terms of accuracy,

precision, recall, and F1 score, albeit with significantly

higher computational demands. The scaled versions of

these models (denoted with "_SC"), particularly for

Logistic Regression, hinted at the importance of feature

normalization in enhancing model predictions. Notably,

such scaling did not markedly affect the tree-based

models, underscoring their inherent robustness to

feature magnitude variations. Reflecting on our

methodological approach, the use of cross-validation

provided a comprehensive understanding of model

generalizability, while the Synthetic Minority Over-

sampling Technique (SMOTE) addressed the common

issue of class imbalance in cybersecurity datasets.

Despite the strengths of our research, we acknowledge

certain limitations. The scope of computational

resources and the potential for model tuning were not

exhaustively explored, which could yield further

improvements in model performance. Moreover, the

dynamic and evolving nature of DDoS attack patterns

necessitates ongoing model adaptation and validation.

For future work, we recommend the exploration of

hybrid models and deep learning architectures, which

may uncover new dimensions of predictive accuracy.

References

[1] Abbasi, M., Shahraki, A., & Taherkordi, A. (2021). Deep

learning for network traffic monitoring and analysis (NTMA): A
survey. Computer Communications, 170, 19–41.

https://doi.org/10.1016/j.comcom.2021.01.021

[2] Ali, T. E., Chong, Y.-W., & Manickam, S. (2023). Machine
Learning Techniques to Detect a DDoS Attack in SDN: A

Systematic Review. Applied Sciences, 13(5), 3183.

https://doi.org/10.3390/app13053183

[3] Bhatia, S., Behal, S., & Ahmed, I. (2018). Distributed denial of

service attacks and defense mechanisms: current landscape and

future directions. Versatile Cybersecurity, 55–97.

https://doi.org/10.1007/978-3-319-97643-3_3

[4] Bhattacharyya, D. K., & Kalita, J. K. (2013). Network anomaly

detection: A machine learning perspective. Crc Press.

https://doi.org/10.1201/b15088

[5] Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly

detection: A survey. ArXiv Preprint ArXiv:1901.03407.

https://doi.org/10.48550/arXiv.1901.03407

[6] Elsayed, M. S., Le-Khac, N.-A., Dev, S., & Jurcut, A. D. (2020).

Ddosnet: A deep-learning model for detecting network attacks.

2020 IEEE 21st International Symposium on" A World of
Wireless, Mobile and Multimedia Networks"(WoWMoM), 391–

396. https://doi.org/10.1109/WoWMoM49955.2020.00072

[7] Iftikhar, A., Qureshi, K. N., Shiraz, M., & Albahli, S. (2023).
Security, trust and privacy risks, responses, and solutions for

high-speed smart cities networks: A systematic literature review.

Journal of King Saud University-Computer and Information

Sciences, 101788. https://doi.org/10.1016/j.jksuci.2023.101788

[8] Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the

performance of machine learning-based IDSs on an imbalanced
and up-to-date dataset. IEEE Access, 8, 32150–32162.

https://doi.org/10.1109/ACCESS.2020.2973219

[9] Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J.
(2019). A survey of deep learning-based network anomaly

detection. Cluster Computing, 22, 949–961.

https://doi.org/10.1007/s10586-017-1117-8

[10] Lohachab, A., & Karambir, B. (2018). Critical analysis of

DDoS—An emerging security threat over IoT networks. Journal
of Communications and Information Networks, 3, 57–78.

https://doi.org/10.1007/s41650-018-0022-5

[11] McIntosh, T., Liu, T., Susnjak, T., Alavizadeh, H., Ng, A.,
Nowrozy, R., & Watters, P. (2023). Harnessing GPT-4 for

generation of cybersecurity GRC policies: A focus on

ransomware attack mitigation. Computers & Security, 134,

103424. https://doi.org/10.1016/j.cose.2023.103424

[12] Mittal, M., Kumar, K., & Behal, S. (2023). Deep learning

approaches for detecting DDoS attacks: A systematic review.
Soft Computing, 27(18), 13039–13075.

https://doi.org/10.1007/s00500-021-06608-1

[13] Osei-Kyei, R., Tam, V., Ma, M., & Mashiri, F. (2021). Critical
review of the threats affecting the building of critical

infrastructure resilience. International Journal of Disaster Risk

Reduction, 60, 102316.

https://doi.org/10.1016/j.ijdrr.2021.102316

[14] Popoola, S. I., Adebisi, B., Ande, R., Hammoudeh, M., Anoh,

K., & Atayero, A. A. (2021). smote-drnn: A deep learning
algorithm for botnet detection in the internet-of-things networks.

Sensors, 21(9), 2985. https://doi.org/10.3390/s21092985

[15] Qazi, N., & Raza, K. (2012). Effect of feature selection, SMOTE
and under sampling on class imbalance classification. 2012

UKSim 14th International Conference on Computer Modelling

and Simulation, 145–150.

https://doi.org/10.1109/UKSim.2012.116

[16] Rudd, E. M., Rozsa, A., Günther, M., & Boult, T. E. (2016). A

survey of stealth malware attacks, mitigation measures, and steps
toward autonomous open world solutions. IEEE

Communications Surveys & Tutorials, 19(2), 1145–1172.

https://doi.org/10.1109/COMST.2016.2636078

[17] Salim, M. M., Rathore, S., & Park, J. H. (2020). Distributed

denial of service attacks and its defenses in IoT: a survey. The

Journal of Supercomputing, 76, 5320–5363.

https://doi.org/10.1007/s11227-019-02945-z

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46

46

[18] Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V.,

Atiah, F., Peters, A. (2020). A review of deep learning with

special emphasis on architectures, applications and recent trends.

Knowledge-Based Systems, 194, 105596.

https://doi.org/10.1016/j.knosys.2020.105596

[19] Shafin, S. S., Prottoy, S. A., Abbas, S., Hakim, S. Bin,

Chowdhury, A., & Rashid, M. M. (2021). Distributed denial of
service attack detection using machine learning and class

oversampling. Applied Intelligence and Informatics: First

International Conference, AII 2021, Nottingham, UK, July 30--

31, 2021, Proceedings 1, 247–259. https://doi.org/10.1007/978-

3-030-82269-9_19

[20] Srivastava, A., Parmar, V., Patel, S., & Chaturvedi, A. (2023).
Adaptive Cyber Defense: Leveraging Neuromorphic Computing

for Advanced Threat Detection and Response. 2023

International Conference on Sustainable Computing and Smart
Systems (ICSCSS), 1557–1562.

https://doi.org/10.1109/ICSCSS57650.2023.10169393

