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Abstract  

This research presents a comparative analysis of machine learning techniques for classifying Distributed Denial of Service 

(DDoS) attacks within network traffic. We evaluated the performance of three algorithms: Logistic Regression, Decision Tree, 

and Random Forest, including their scaled-feature counterparts. The study utilized a robust methodology incorporating 

advanced data preprocessing, feature engineering, and Synthetic Minority Over-sampling Technique (SMOTE) to address class 

imbalance. The models were rigorously tested using a cross-validation framework, assessing their accuracy, precision, recall, 

and F1 score. Results indicated that the Random Forest algorithm outperformed the others, demonstrating superior predictive 

accuracy and consistency, albeit with higher computational costs. Logistic Regression, when feature-scaled, showed significant 

improvement in performance, highlighting the importance of data normalization in models sensitive to feature scaling. Decision 

Trees provided a quick and interpretable model, though slightly less accurate than the Random Forest. The research findings 

highlight the trade-offs between predictive performance and computational efficiency in selecting machine learning models for 

cybersecurity applications. The study contributes to the cybersecurity domain by elucidating the efficacy of ensemble 

techniques in DDoS attack classification and underscores the potential for model improvement through scaling and data 

balancing. 
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1. Introduction 

As the digital landscape continues to evolve, 

cybersecurity threats like Distributed Denial of Service 

(DDoS) attacks are becoming increasingly sophisticated 

and damaging [1], [2], [3]. These attacks disrupt 

essential online services by flooding networks with 

excessive traffic, posing significant threats to the 

stability and security of digital infrastructures [4], [5], 

[6]. The complexity and dynamic nature of these attacks 

necessitate advanced detection and mitigation strategies 

[7], [8], [9]. This research is situated within this context, 

aiming to enhance the detection and classification of 

DDoS attacks using innovative machine learning 

approaches. The literature on DDoS attack detection is 

vast and diverse. Studies such as those who explored 

various machine learning techniques for network 

anomaly detection, providing valuable insights but often 

limited by static modeling approaches [10], [11], [12]. 

Another research emphasized the potential of deep 

learning methods, yet these require extensive 

computational resources and large datasets [13]. On the 

other hand, another work investigated classical machine 

learning models, highlighting their efficiency but 

pointing out their limitations in handling complex and 

high-dimensional data typical in network traffic [14]. 

Furthermore, the work from other source on the issue of 

imbalanced datasets prevalent in network security, 

proposing various sampling techniques to enhance 

model performance [15]. 

The current state of the art incorporates a range of 

techniques, from traditional machine learning models to 

more recent deep learning frameworks [16], [17]. 

Despite the progress, there remains a crucial gap in 

comprehensively comparing the effectiveness of 

different machine learning models, particularly in the 

context of DDoS attack classification. Many studies 

focus on a single model or a specific aspect of the 

classification problem, lacking a holistic approach that 

considers various models under uniform experimental 

conditions. 

Addressing this gap, our research makes several key 

contributions, firstly is an extensive data preprocessing 

and feature engineering, in this process, we apply a 

series of advanced data preprocessing techniques to 

refine the network traffic data, ensuring high-quality 

inputs for model training. Additionally, our unique 

feature engineering strategy enhances the models' 

capacity to distinguish between normal traffic and 

DDoS attacks. Secondly, by implementing diverse 

machine learning models. This process is a central 

aspect of our study to do comparative analysis of three 

widely used machine learning models: Logistic 

Regression, Decision Trees, and Random Forest. This 

comparison provides a comprehensive view of their 

performance in the context of DDoS attack 

classification. 

We also employ PCA for effective dimensionality 

reduction, allowing us to manage the complex nature of 
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network data. Simultaneously, our use of SMOTE 

addresses the challenge of class imbalance, a common 

issue in network security datasets [18], [19], [20]. To do 

In-depth comparative evaluation, the evaluation method 

involves a rigorous analysis of the models based on 

accuracy, precision, recall, and F1 score. This thorough 

comparative study helps in identifying the most 

effective model under various scenarios, contributing 

significantly to the field of network security. This 

study's implications extend beyond the immediate realm 

of DDoS attack classification. By providing a detailed 

comparison of different machine learning models, our 

research contributes to the broader understanding of 

their applicability in cybersecurity. The methodologies 

and insights gained can be applied to other areas of 

network security, potentially aiding in the development 

of more robust and adaptable defense mechanisms. 

Furthermore, our work sets a foundation for future 

research, encouraging further exploration into the 

comparative analysis of machine learning models in 

cybersecurity. 

2. Research Method 

2.1 Data Collection and Preprocessing 

The dataset used in this study was sourced from Kaggle, 

specifically designed to contain network logs pertinent 

to DDoS attacks. The 'DDoS Attack Network Logs' 

dataset comprises various network attributes that are key 

to discerning traffic patterns indicative of attacks. The 

initial step involved loading the dataset using the 

ArffLoader function, tailored for handling the ARFF 

(Attribute-Relation File Format) commonly utilized in 

machine learning datasets. 

Furthermore, we create dataframe creation in order to do 

post-loading, the data was structured into a Pandas 

DataFrame. This format is conducive for data 

manipulation in Python, offering a wide array of 

functionalities for data analysis. After that, we create 

feature-target separation, in this process, the dataset was 

bifurcated into feature columns ('df_X') and a target 

column ('df_target'). This separation is a cornerstone of 

supervised learning, where the model learns to predict 

the target variable from the features. 

Furthermore, data encoding is implemented, the dataset 

contained byte sequences which were converted to 

strings for uniformity and ease of processing. This 

encoding step is crucial for handling categorical data in 

subsequent analysis. Then, specific columns were cast 

to integer and object types to maintain consistency with 

Python’s data processing libraries. We also conducted a 

thorough check for missing values and duplicate entries 

to ensure data integrity. Handling missing values is vital 

to prevent inaccuracies during model training. 

2.2 Feature Engineering 

Feature engineering is a pivotal step where domain 

knowledge is leveraged to extract and optimize features 

from raw data. Firstly, categorical data handling, in this 

process, the categorical values in the 'FLAGS' column 

were replaced with numerical codes, as most machine 

learning algorithms necessitate numerical inputs. 

Secondly, one-hot encoding, this technique was 

employed to process categorical variables, converting 

them into a format amenable to machine learning 

algorithms, thus aiding in improving model accuracy. 

Thirdly is logarithmic transformation, this process is 

important to address data skewness, logarithmic 

transformations were applied to various packet-related 

features. This approach is often effective in normalizing 

data distributions, enhancing the performance of 

learning algorithms. 

2.3 Dimensionality Reduction and Class Imbalance 

Handling 

PCA (Principal Component Analysis) was employed to 

mitigate the challenge of high-dimensional data. PCA 

reduces the dimensionality while retaining most of the 

data variance, aiding in simplifying the dataset. To 

address the class imbalance prevalent in network 

security datasets, SMOTE (Synthetic Minority Over-

sampling Technique) was utilized. This technique 

synthesizes new samples from the minority class, 

balancing the dataset for training. 

2.4 Model Implementation 

In the model implementation phase of our research, we 

dedicated our efforts to the deployment of three distinct 

machine learning algorithms, each chosen for their 

relevance and potential in addressing the classification 

challenges posed by DDoS attack detection in network 

traffic data. Logistic Regression was the first of the three 

models we implemented. As a probabilistic linear 

classifier, Logistic Regression is traditionally prized for 

its simplicity and interpretability. In our 

implementation, we adapted the model to handle the 

binary classification task by modeling the log-odds of 

the probability of an attack as a linear combination of 

the input features. This required careful consideration of 

the feature space and the relationships between the 

features and the probability of an attack to ensure that 

the logistic function's output could be effectively 

threshold to distinguish between the two classes of 

interest. 

Decision Trees were selected for their intuitive 

representation of decision-making processes, mirroring 

the if-then-else decision rules that can be readily 

understood. To implement the Decision Tree, we 

constructed a flowchart-like structure that recursively 

split the data into homogenous subsets. This was 

achieved by identifying the features that resulted in the 

most significant reduction in a given impurity measure 

(such as Gini impurity or entropy) at each node. Given 

the diverse nature of network traffic data, the Decision 

Tree was fine-tuned to prevent overfitting while 
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maintaining sufficient complexity to capture the 

underlying patterns indicative of DDoS attacks. 

Random Forest was the final model we implemented, 

chosen for its robustness and accuracy resulting from its 

ensemble approach. By integrating multiple Decision 

Trees, each trained on a different subset of the data and 

features, the Random Forest model mitigates the 

overfitting tendencies of individual trees. In our study, 

the Random Forest model was composed of numerous 

trees whose predictions were aggregated through 

majority voting for classification. We adjusted the 

number of trees and the depth of each tree to optimize 

the trade-off between model bias and variance, ensuring 

that the model captured the essential characteristics of 

the data without being swayed by noise. 

Each model was implemented with a particular 

emphasis on optimizing for the idiosyncrasies of our 

dataset, which included an imbalance between the 

classes and a wide range of feature scales. We employed 

techniques such as feature scaling and class weighting 

to tailor each model to the dataset's specific 

characteristics and requirements. Through rigorous 

hyperparameter tuning and validation, we ensured that 

each model achieved a high level of performance while 

avoiding the pitfalls of overfitting or underfitting. The 

outcome of this careful implementation was a set of 

models that were well-suited to our data and capable of 

providing insights into the nature of DDoS attacks 

within network traffic. 

2.5 Evaluation Metrics and Procedures 

Model evaluation was conducted using cross-validation, 

a robust technique for assessing model performance on 

unseen data. We employed a range of metrics, including 

accuracy, precision, recall, and F1 score, to 

comprehensively evaluate each model. For categorical 

variables, one-hot encoding transforms a categorical 

variable with 'n' categories into 'n' binary features, each 

representing one category. For a category 'c', the feature 

corresponding to 'c' is 1, and all other features are 0. 

For a variable x, the logarithmic transformation is given 

by, y = log(x), where 'log' is the natural logarithm. This 

is applied to skewed features to normalize their 

distribution. Furthermore, PCA involves the 

computation of the eigenvalue decomposition of a data 

covariance matrix or singular value decomposition of a 

data matrix, usually after mean centering the data for 

each attribute. The principal components are the 

eigenvectors of this covariance matrix. In order to 

measure effectiveness of the algorithm we used four 

metrics: accuracy, precision, recall and F1, these are 

described in the Equation (1-4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (3) 

𝐹1 =  
2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

Where TP is a True Positives, TN is a True Negatives, 

FP is a False Positives and FN is a False Negatives. 

2.6 Logistic Regression 

Logistic Regression is commonly used for binary 

classification problems. It models the probability of a 

binary outcome using the logistic function as presented 

in the Equation (5). 

𝑃(𝑦=1) =
1

(1 + 𝑒−(β0+β1∗x1+⋯+β𝑛∗𝑥𝑛))
 (5) 

Where P(y=1) is the probability of the dependent variable 

equaling a '1', e is the base of natural logarithms, β0, β1, 

..., βn are the regression coefficients and x1, x2, ..., xn are 

the feature variables. 

2.7 Decision Tree 

Decision Trees are a non-parametric supervised learning 

method used for classification and regression. The tree 

structure represents decisions based on feature values. A 

decision tree splits the data into subsets based on the 

value of input features. This splitting is repeated 

recursively, forming a tree structure. Commonly used 

metrics for determining splits are Gini Impurity and 

Information Gain (Entropy). These concepts is 

described in the Equation (6-7). 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑘)2

𝑁

𝑘=1

 (6) 

𝐻(𝑆) =  − ∑ 𝑝𝑘𝑙𝑜𝑔2(𝑝𝑘)

𝑁

𝑘=1

 (7) 

Where pₖ is the proportion of samples that belong to 

class k in the set S. 

2.8 Random Forest 

Random Forest is an ensemble learning method for 

classification and regression, which operates by 

constructing a multitude of decision trees at training 

time. The output of the Random Forest is determined by 

the aggregate of the predictions made by individual 

trees. Random Forest employs a technique known as 

Bootstrap Aggregating or Bagging. This method 

involves creating multiple subsets of the original dataset 
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with replacement, known as bootstrap samples. Each 

tree in the Random Forest is trained on one of these 

bootstrap samples. Mathematically, given a dataset D of 

size N, a bootstrap sample is a subset Dᵢ (also of size N) 

sampled with replacement from D. This process is 

repeated to create as many datasets as there are trees in 

the forest. 

Each decision tree in the Random Forest is constructed 

using a subset of features chosen at random at each split. 

If there are M features, a number m (where m << M) is 

specified such that at each split in the tree, m features 

are selected at random out of the M and the best split on 

these m is used to split the node. The value of m is 

constant during the forest growing. 

For regression, the prediction of the Random Forest is 

given by averaging the predictions of all the individual 

trees. Mathematically, if h(x, Θᵢ) is the prediction of the 

i-th tree, then the Random Forest prediction, H(x), for a 

given input x is described in the Equation (8). 

𝐻(𝑥) =  
1

𝑁
∑ ℎ(𝑥𝑖 , 𝛩𝑖)

𝑁

𝑖=1

 (8) 

Where N is the number of trees, and Θᵢ represents the 

parameters of the i-th tree. For classification, the output 

is the class selected by most trees (majority voting). 

Each tree gives a 'vote' for a class, and the class with the 

most votes is chosen as the final prediction. 

3.  Result and Discussion 

Figure 1-3 appear to be a set of boxplots comparing the 

performance metrics of three different machine learning 

models: Logistic Regression, Decision Tree, and 

Random Forest. Each boxplot shows the distribution of 

a specific metric (accuracy, precision, recall, F1 score) 

across multiple runs of the model.  

 

Figure 1. Logistic Regression Result  



 

Gregorius Airlangga 

 

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 1 (2024) 38-46 

42 

 

 

 

Figure 1. Decision Tree Result  

 

 

Figure 3. Random Forest Result  
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Logistic Regression appears as the first set of boxplots. 

Logistic Regression is a statistical model that, in this 

context, predicts the probability of a binary outcome. 

The boxplots indicate that accuracy has a median around 

0.92, suggesting that, on average, the model correctly 

predicts the outcome 92% of the time. However, there is 

notable variability in the accuracy, as evidenced by 

outliers. These outliers could indicate cases where the 

model's performance deviated significantly from the 

median. Precision and recall both have medians close to 

0.90. Precision measures the model's accuracy in 

predicting positive labels, while recall assesses how well 

the model captures actual positive instances. The 

similarity of these medians suggests a balanced trade-off 

between these two metrics. The F1 score, which 

harmonizes precision and recall into a single metric, 

reflects this balance with a similar median. When we 

consider the scaled variants of these metrics (indicated 

with an "_SC" suffix), the median values are slightly 

higher, and the interquartile ranges (IQRs) are tighter. 

This indicates an improvement in model performance 

when feature scaling is applied, which is common with 

Logistic Regression as it can be sensitive to the scale of 

input variables. 

Moving to the Decision Tree model, the boxplots 

demonstrate a consistently high median performance 

across all metrics, with accuracy peaking around 0.95. 

This suggests that the Decision Tree model, which 

works by partitioning the data into subsets based on 

feature value thresholds, is highly effective at 

classification in this case. The high precision and recall 

indicate that the Decision Tree makes accurate 

predictions and is good at capturing the majority of the 

relevant cases. Notably, there is minimal variation in 

performance with scaling, as the boxplots for the scaled 

and unscaled metrics are closely aligned. This is 

indicative of the Decision Tree model's robustness to 

feature scaling, as it does not rely on distance 

calculations that can be affected by the scale of the data. 

Lastly, the Random Forest model, which is an ensemble 

of Decision Trees, shows the highest median scores and 

the least variability among the three models. The 

Random Forest boxplots show medians around 0.96 for 

accuracy, 0.95 for precision, and similarly high for recall 

and F1 score. The tight IQRs across these metrics 

suggest that the Random Forest model is not only 

accurate but also consistent in its predictions across 

different iterations. This is typical of Random Forests, 

which tend to perform well on a variety of datasets by 

reducing overfitting through averaging the predictions 

of multiple trees. Similar to the Decision Tree, the 

Random Forest model does not show significant 

changes in performance with feature scaling. 

Random Forest appears to be the best performing model 

among the three, with the highest median values and 

tightest IQRs for all metrics, which indicates not only 

high performance but also consistency across runs. 

Decision Tree shows very high performance as well but 

with a slight decrease compared to Random Forest. 

Logistic Regression has the lowest median scores 

among the three models. However, the performance 

improves with feature scaling, which indicates that 

Logistic Regression is more sensitive to the scale of the 

data. Scaling does not significantly impact the 

performance of Decision Trees and Random Forests, 

which might be due to these models' intrinsic handling 

of feature scales. Outliers in the boxplots suggest that 

there are runs where the models either significantly 

overperform or underperform compared to the median, 

which could be due to the variability in the data or the 

randomness in the training process. Computation Time 

of Models can be seen on Figure 4. 

 

Figure 4. Computation Time of Models 

In terms of computational efficiency, Logistic 

Regression is the fastest, with times ranging from 

approximately 6.85 to 8.53 seconds. The Decision Tree 

model is comparably fast, with times around 2.70 to 3.71 

seconds. The Random Forest model, however, takes 

considerably longer, ranging from about 44.90 to 48.95 

seconds, which is expected given that it builds multiple 

trees and combines their results. While the Random 

Forest model outperforms the other two in terms of 
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predictive metrics, it requires significantly more 

computational time, which might be a consideration in 

practical applications. Logistic Regression, after 

scaling, shows improved performance, and its quick 

computation makes it an attractive model for situations 

where speed is a critical factor. Decision Trees offer a 

good balance between speed and performance, with 

feature scaling not significantly affecting its results. The 

choice between these models would ultimately depend 

on the specific requirements of the application, 

including the acceptable trade-off between accuracy and 

computational resources. Test harness result can be seen 

on Figure 5. 

 

Figure 5. Test Harness 

As presented in the Figure 5, The logs indicate multiple 

runs of a Logistic Regression model, with and without 

feature scaling (denoted as LOGI_SC). The times 

recorded for these runs show that the model takes, on 

average, about 8 seconds to complete the test harness 

function. Logistic Regression is a foundational machine 

learning algorithm that models the probability of a 

binary outcome. It is generally favored for its simplicity 

and efficiency, especially in cases where the relationship 

between the independent variables and the binary 

outcome is approximately linear. The scaled version 

(LOGI_SC) implies that the data has been standardized 

or normalized to improve the model's performance, 

which can be particularly beneficial for Logistic 

Regression as it relies on the optimization of a loss 

function that can converge faster when features are on 

the same scale. Decision Trees are recorded next, also 

both in scaled (DCT_SC) and unscaled forms. These 

models are significantly faster, completing the test 

harness in roughly 2.7 seconds. This efficiency stems 

from the Decision Tree's flowchart-like structure, where 

binary decisions are made at each node, leading to a final 

classification at the leaves. Decision Trees are highly 

interpretable and do not require feature scaling, which is 

consistent with the similar execution times observed for 

DCT and DCT_SC. Finally, the Random Forest models, 

which are ensembles of Decision Trees, show a much 

higher execution time, averaging around 48 seconds. 

This substantial increase in time is expected due to the 

complexity of Random Forest, which builds multiple 

Decision Trees on various sub-samples of the dataset 

and averages their predictions. The nature of this 

algorithm makes it robust to overfitting and generally 

more accurate than a single Decision Tree, at the cost of 

increased computational complexity. Similar to 

Decision Trees, Random Forests do not inherently 

benefit from feature scaling (RFC_SC), as evidenced by 

the consistent execution times regardless of scaling. 

In terms of the test harness function itself, the usage of 

cross-validation (CV) with five folds suggests a robust 

evaluation methodology. In CV, the dataset is split into 

five parts, and the model is trained and tested five times, 

with each part being used as the test set once. This 

method provides a thorough assessment of the model's 

performance and generalizability to new data. From 

these execution times, one can infer that while Logistic 

Regression and Decision Trees are quicker to train and 

evaluate, Random Forests take a considerably longer 

time. This trade-off between time and predictive 
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performance is a common consideration in machine 

learning. Practitioners must decide whether the 

improvement in prediction accuracy with Random 

Forest is worth the additional computation time, which 

may be a critical factor in real-time applications or when 

working with very large datasets. The information from 

the test_harness function is valuable for understanding 

not only the performance of the models but also the 

computational demands they place on the system. Such 

insights are crucial when it comes to selecting the right 

model for deployment in production environments, 

where both accuracy and efficiency need to be balanced 

according to the application's requirements. 

4.  Conclusion 

Our findings reveal a nuanced landscape of model 

efficacy and computational efficiency. The Logistic 

Regression model demonstrated admirable predictive 

performance, particularly when feature scaling was 

applied, suggesting its utility in scenarios where model 

interpretability and operational speed are paramount. 

The Decision Tree model offered a compelling balance 

between speed and performance, reinforcing its 

reputation as a versatile and interpretable classifier. 

However, it was the Random Forest model that emerged 

as the superior performer in terms of accuracy, 

precision, recall, and F1 score, albeit with significantly 

higher computational demands. The scaled versions of 

these models (denoted with "_SC"), particularly for 

Logistic Regression, hinted at the importance of feature 

normalization in enhancing model predictions. Notably, 

such scaling did not markedly affect the tree-based 

models, underscoring their inherent robustness to 

feature magnitude variations. Reflecting on our 

methodological approach, the use of cross-validation 

provided a comprehensive understanding of model 

generalizability, while the Synthetic Minority Over-

sampling Technique (SMOTE) addressed the common 

issue of class imbalance in cybersecurity datasets. 

Despite the strengths of our research, we acknowledge 

certain limitations. The scope of computational 

resources and the potential for model tuning were not 

exhaustively explored, which could yield further 

improvements in model performance. Moreover, the 

dynamic and evolving nature of DDoS attack patterns 

necessitates ongoing model adaptation and validation. 

For future work, we recommend the exploration of 

hybrid models and deep learning architectures, which 

may uncover new dimensions of predictive accuracy.  
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