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Abstract

This research presents a comparative analysis of machine learning techniques for classifying Distributed Denial of Service
(DDoS) attacks within network traffic. We evaluated the performance of three algorithms: Logistic Regression, Decision Tree,
and Random Forest, including their scaled-feature counterparts. The study utilized a robust methodology incorporating
advanced data preprocessing, feature engineering, and Synthetic Minority Over-sampling Technique (SMOTE) to address class
imbalance. The models were rigorously tested using a cross-validation framework, assessing their accuracy, precision, recall,
and F1 score. Results indicated that the Random Forest algorithm outperformed the others, demonstrating superior predictive
accuracy and consistency, albeit with higher computational costs. Logistic Regression, when feature-scaled, showed significant
improvement in performance, highlighting the importance of data normalization in models sensitive to feature scaling. Decision
Trees provided a quick and interpretable model, though slightly less accurate than the Random Forest. The research findings
highlight the trade-offs between predictive performance and computational efficiency in selecting machine learning models for
cybersecurity applications. The study contributes to the cybersecurity domain by elucidating the efficacy of ensemble
techniques in DDoS attack classification and underscores the potential for model improvement through scaling and data

balancing.
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1. Introduction

As the digital landscape continues to evolve,
cybersecurity threats like Distributed Denial of Service
(DDoS) attacks are becoming increasingly sophisticated
and damaging [1], [2], [3]. These attacks disrupt
essential online services by flooding networks with
excessive traffic, posing significant threats to the
stability and security of digital infrastructures [4], [5],
[6]. The complexity and dynamic nature of these attacks
necessitate advanced detection and mitigation strategies
[71, [8], [9]. This research is situated within this context,
aiming to enhance the detection and classification of
DDoS attacks using innovative machine learning
approaches. The literature on DDoS attack detection is
vast and diverse. Studies such as those who explored
various machine learning techniques for network
anomaly detection, providing valuable insights but often
limited by static modeling approaches [10], [11], [12].
Another research emphasized the potential of deep
learning methods, yet these require extensive
computational resources and large datasets [13]. On the
other hand, another work investigated classical machine
learning models, highlighting their efficiency but
pointing out their limitations in handling complex and
high-dimensional data typical in network traffic [14].
Furthermore, the work from other source on the issue of
imbalanced datasets prevalent in network security,
proposing various sampling techniques to enhance
model performance [15].

The current state of the art incorporates a range of
techniques, from traditional machine learning models to
more recent deep learning frameworks [16], [17].
Despite the progress, there remains a crucial gap in
comprehensively comparing the effectiveness of
different machine learning models, particularly in the
context of DDoS attack classification. Many studies
focus on a single model or a specific aspect of the
classification problem, lacking a holistic approach that
considers various models under uniform experimental
conditions.

Addressing this gap, our research makes several key
contributions, firstly is an extensive data preprocessing
and feature engineering, in this process, we apply a
series of advanced data preprocessing techniques to
refine the network traffic data, ensuring high-quality
inputs for model training. Additionally, our unique
feature engineering strategy enhances the models'
capacity to distinguish between normal traffic and
DDoS attacks. Secondly, by implementing diverse
machine learning models. This process is a central
aspect of our study to do comparative analysis of three
widely used machine learning models: Logistic
Regression, Decision Trees, and Random Forest. This
comparison provides a comprehensive view of their
performance in the context of DDoS attack
classification.

We also employ PCA for effective dimensionality
reduction, allowing us to manage the complex nature of
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network data. Simultaneously, our use of SMOTE
addresses the challenge of class imbalance, a common
issue in network security datasets [18], [19], [20]. To do
In-depth comparative evaluation, the evaluation method
involves a rigorous analysis of the models based on
accuracy, precision, recall, and F1 score. This thorough
comparative study helps in identifying the most
effective model under various scenarios, contributing
significantly to the field of network security. This
study's implications extend beyond the immediate realm
of DDoS attack classification. By providing a detailed
comparison of different machine learning models, our
research contributes to the broader understanding of
their applicability in cybersecurity. The methodologies
and insights gained can be applied to other areas of
network security, potentially aiding in the development
of more robust and adaptable defense mechanisms.
Furthermore, our work sets a foundation for future
research, encouraging further exploration into the
comparative analysis of machine learning models in
cybersecurity.

2. Research Method
2.1 Data Collection and Preprocessing

The dataset used in this study was sourced from Kaggle,
specifically designed to contain network logs pertinent
to DDoS attacks. The 'DDoS Attack Network Logs'
dataset comprises various network attributes that are key
to discerning traffic patterns indicative of attacks. The
initial step involved loading the dataset using the
ArffLoader function, tailored for handling the ARFF
(Attribute-Relation File Format) commonly utilized in
machine learning datasets.

Furthermore, we create dataframe creation in order to do
post-loading, the data was structured into a Pandas
DataFrame. This format is conducive for data
manipulation in Python, offering a wide array of
functionalities for data analysis. After that, we create
feature-target separation, in this process, the dataset was
bifurcated into feature columns (‘'df_X') and a target
column ('df_target’). This separation is a cornerstone of
supervised learning, where the model learns to predict
the target variable from the features.

Furthermore, data encoding is implemented, the dataset
contained byte sequences which were converted to
strings for uniformity and ease of processing. This
encoding step is crucial for handling categorical data in
subsequent analysis. Then, specific columns were cast
to integer and object types to maintain consistency with
Python’s data processing libraries. We also conducted a
thorough check for missing values and duplicate entries
to ensure data integrity. Handling missing values is vital
to prevent inaccuracies during model training.

2.2 Feature Engineering

Feature engineering is a pivotal step where domain
knowledge is leveraged to extract and optimize features

from raw data. Firstly, categorical data handling, in this
process, the categorical values in the 'FLAGS' column
were replaced with numerical codes, as most machine
learning algorithms necessitate numerical inputs.
Secondly, one-hot encoding, this technique was
employed to process categorical variables, converting
them into a format amenable to machine learning
algorithms, thus aiding in improving model accuracy.

Thirdly is logarithmic transformation, this process is
important to address data skewness, logarithmic
transformations were applied to various packet-related
features. This approach is often effective in normalizing
data distributions, enhancing the performance of
learning algorithms.

2.3 Dimensionality Reduction and Class Imbalance
Handling

PCA (Principal Component Analysis) was employed to
mitigate the challenge of high-dimensional data. PCA
reduces the dimensionality while retaining most of the
data variance, aiding in simplifying the dataset. To
address the class imbalance prevalent in network
security datasets, SMOTE (Synthetic Minority Over-
sampling Technique) was utilized. This technique
synthesizes new samples from the minority class,
balancing the dataset for training.

2.4 Model Implementation

In the model implementation phase of our research, we
dedicated our efforts to the deployment of three distinct
machine learning algorithms, each chosen for their
relevance and potential in addressing the classification
challenges posed by DDoS attack detection in network
traffic data. Logistic Regression was the first of the three
models we implemented. As a probabilistic linear
classifier, Logistic Regression is traditionally prized for
its  simplicity and interpretability. In  our
implementation, we adapted the model to handle the
binary classification task by modeling the log-odds of
the probability of an attack as a linear combination of
the input features. This required careful consideration of
the feature space and the relationships between the
features and the probability of an attack to ensure that
the logistic function's output could be effectively
threshold to distinguish between the two classes of
interest.

Decision Trees were selected for their intuitive
representation of decision-making processes, mirroring
the if-then-else decision rules that can be readily
understood. To implement the Decision Tree, we
constructed a flowchart-like structure that recursively
split the data into homogenous subsets. This was
achieved by identifying the features that resulted in the
most significant reduction in a given impurity measure
(such as Gini impurity or entropy) at each node. Given
the diverse nature of network traffic data, the Decision
Tree was fine-tuned to prevent overfitting while

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 1 (2024) 38-46

39



Gregorius Airlangga

maintaining sufficient complexity to capture the
underlying patterns indicative of DDoS attacks.

Random Forest was the final model we implemented,
chosen for its robustness and accuracy resulting from its
ensemble approach. By integrating multiple Decision
Trees, each trained on a different subset of the data and
features, the Random Forest model mitigates the
overfitting tendencies of individual trees. In our study,
the Random Forest model was composed of humerous
trees whose predictions were aggregated through
majority voting for classification. We adjusted the
number of trees and the depth of each tree to optimize
the trade-off between model bias and variance, ensuring
that the model captured the essential characteristics of
the data without being swayed by noise.

Each model was implemented with a particular
emphasis on optimizing for the idiosyncrasies of our
dataset, which included an imbalance between the
classes and a wide range of feature scales. We employed
techniques such as feature scaling and class weighting
to tailor each model to the dataset's specific
characteristics and requirements. Through rigorous
hyperparameter tuning and validation, we ensured that
each model achieved a high level of performance while
avoiding the pitfalls of overfitting or underfitting. The
outcome of this careful implementation was a set of
models that were well-suited to our data and capable of
providing insights into the nature of DDoS attacks
within network traffic.

2.5 Evaluation Metrics and Procedures

Model evaluation was conducted using cross-validation,
a robust technique for assessing model performance on
unseen data. We employed a range of metrics, including
accuracy, precision, recall, and F1 score, to
comprehensively evaluate each model. For categorical
variables, one-hot encoding transforms a categorical
variable with 'n' categories into 'n' binary features, each
representing one category. For a category 'c', the feature
corresponding to 'c' is 1, and all other features are 0.

For a variable x, the logarithmic transformation is given
by, y = log(x), where 'log' is the natural logarithm. This
is applied to skewed features to normalize their
distribution.  Furthermore, PCA involves the
computation of the eigenvalue decomposition of a data
covariance matrix or singular value decomposition of a
data matrix, usually after mean centering the data for
each attribute. The principal components are the
eigenvectors of this covariance matrix. In order to
measure effectiveness of the algorithm we used four
metrics: accuracy, precision, recall and F1, these are
described in the Equation (1-4).

(TP +TN)
(TP + TN + FP + FN)

Accuracy =

1)

Precision = e 2

recision = (TP + FP) 2

Recall = TP 3

ecat = TP+ F) )
2 (Precision * Recall)

Fl = 4)

"~ (Precision + Recall)

Where TP is a True Positives, TN is a True Negatives,
FP is a False Positives and FN is a False Negatives.

2.6 Logistic Regression

Logistic Regression is commonly used for binary
classification problems. It models the probability of a
binary outcome using the logistic function as presented
in the Equation (5).

1
P(J’:l) = 1+ e—(Bo+B1*X1+~-+Bn*Xn))

®)

Where P(y=1) is the probability of the dependent variable
equaling a 'l', e is the base of natural logarithms, Bo, 1,
..., Bn are the regression coefficients and x1, Xz, ..., X, are
the feature variables.

2.7 Decision Tree

Decision Trees are a non-parametric supervised learning
method used for classification and regression. The tree
structure represents decisions based on feature values. A
decision tree splits the data into subsets based on the
value of input features. This splitting is repeated
recursively, forming a tree structure. Commonly used
metrics for determining splits are Gini Impurity and
Information Gain (Entropy). These concepts is
described in the Equation (6-7).

Gini=1- Y (pp)? (6)
kz .
N
HO) = = ) plogo@) (1)
k=1

Where px is the proportion of samples that belong to
class k in the set S.

2.8 Random Forest

Random Forest is an ensemble learning method for
classification and regression, which operates by
constructing a multitude of decision trees at training
time. The output of the Random Forest is determined by
the aggregate of the predictions made by individual
trees. Random Forest employs a technique known as
Bootstrap Aggregating or Bagging. This method
involves creating multiple subsets of the original dataset
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with replacement, known as bootstrap samples. Each
tree in the Random Forest is trained on one of these
bootstrap samples. Mathematically, given a dataset D of
size N, a bootstrap sample is a subset D; (also of size N)
sampled with replacement from D. This process is
repeated to create as many datasets as there are trees in
the forest.

Each decision tree in the Random Forest is constructed
using a subset of features chosen at random at each split.
If there are M features, a number m (where m << M) is
specified such that at each split in the tree, m features
are selected at random out of the M and the best split on
these m is used to split the node. The value of m is
constant during the forest growing.

For regression, the prediction of the Random Forest is
given by averaging the predictions of all the individual
trees. Mathematically, if h(x, ®;) is the prediction of the
i-th tree, then the Random Forest prediction, H(x), for a
given input x is described in the Equation (8).

N
H(x) = %Z h(x;, 0;) ®)
i=1

Where N is the number of trees, and ©; represents the
parameters of the i.x tree. For classification, the output
is the class selected by most trees (majority voting).
Each tree gives a 'vote' for a class, and the class with the
most votes is chosen as the final prediction.

3. Result and Discussion

Figure 1-3 appear to be a set of boxplots comparing the
performance metrics of three different machine learning
models: Logistic Regression, Decision Tree, and
Random Forest. Each boxplot shows the distribution of
a specific metric (accuracy, precision, recall, F1 score)
across multiple runs of the model.
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Decision Tree
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Logistic Regression appears as the first set of boxplots.
Logistic Regression is a statistical model that, in this
context, predicts the probability of a binary outcome.
The boxplots indicate that accuracy has a median around
0.92, suggesting that, on average, the model correctly
predicts the outcome 92% of the time. However, there is
notable variability in the accuracy, as evidenced by
outliers. These outliers could indicate cases where the
model's performance deviated significantly from the
median. Precision and recall both have medians close to
0.90. Precision measures the model's accuracy in
predicting positive labels, while recall assesses how well
the model captures actual positive instances. The
similarity of these medians suggests a balanced trade-off
between these two metrics. The F1 score, which
harmonizes precision and recall into a single metric,
reflects this balance with a similar median. When we
consider the scaled variants of these metrics (indicated
with an "_SC" suffix), the median values are slightly
higher, and the interquartile ranges (IQRs) are tighter.
This indicates an improvement in model performance
when feature scaling is applied, which is common with
Logistic Regression as it can be sensitive to the scale of
input variables.

Moving to the Decision Tree model, the boxplots
demonstrate a consistently high median performance
across all metrics, with accuracy peaking around 0.95.
This suggests that the Decision Tree model, which
works by partitioning the data into subsets based on
feature value thresholds, is highly effective at
classification in this case. The high precision and recall
indicate that the Decision Tree makes accurate
predictions and is good at capturing the majority of the
relevant cases. Notably, there is minimal variation in
performance with scaling, as the boxplots for the scaled
and unscaled metrics are closely aligned. This is
indicative of the Decision Tree model's robustness to
feature scaling, as it does not rely on distance
calculations that can be affected by the scale of the data.

Lastly, the Random Forest model, which is an ensemble
of Decision Trees, shows the highest median scores and
the least variability among the three models. The
Random Forest boxplots show medians around 0.96 for
accuracy, 0.95 for precision, and similarly high for recall
and F1 score. The tight IQRs across these metrics
suggest that the Random Forest model is not only
accurate but also consistent in its predictions across
different iterations. This is typical of Random Forests,
which tend to perform well on a variety of datasets by
reducing overfitting through averaging the predictions
of multiple trees. Similar to the Decision Tree, the
Random Forest model does not show significant
changes in performance with feature scaling.

Random Forest appears to be the best performing model
among the three, with the highest median values and
tightest 1QRs for all metrics, which indicates not only
high performance but also consistency across runs.

Decision Tree shows very high performance as well but
with a slight decrease compared to Random Forest.
Logistic Regression has the lowest median scores
among the three models. However, the performance
improves with feature scaling, which indicates that
Logistic Regression is more sensitive to the scale of the
data. Scaling does not significantly impact the
performance of Decision Trees and Random Forests,
which might be due to these models' intrinsic handling
of feature scales. Outliers in the boxplots suggest that
there are runs where the models either significantly
overperform or underperform compared to the median,
which could be due to the variability in the data or the
randomness in the training process. Computation Time
of Models can be seen on Figure 4.

Model Mean Std time_models

0 LOGlacc 0.91959 0.00260 8.64950
1 LOGI prec 0.99736 0.00047 7.91722
2 LOGIrec 0.84157 0.00483 8.30351
3 LOGIf1 0.91286 0.00277 8.13204
4 LOGI_SCacc 093387 0.00195 8.64610
5 LOGI_SCprec 0.99445 0.00091 8.44387
6 LOGI_SCrec 087272 0.00419 7.90912
7 LOGI_SCf1 0.92961 0.00216 8.52714
8 DCT acc 0.95708 0.00166 2.70445
9 DCT prec  0.95907 0.00175 2.71020
10 DCTrec 095498 0.00248 3.68586
11 DCTf1 095702 0.00187 3.56941
12 DCT_SCacc 095486 0.00134 2.77467
13 DCT_SCprec 095644 0.00154 2.76875
14 DCT_SCrec 0.95319 0.00351 2.81237
15 DCT_SCf1 0.95481 0.00201 3.71841
16 RFC acc 0.96309 0.00212 47.29631
17 RFC prec  0.97294 0.00157 48.90547
18 RFCrec 0.95279 0.00299 48.98979
19 RFCf1 096257 0.00211 48.16537
20 RFC_SCacc 096317 0.00209 46.46499
21 RFC_SCprec 097627 0.00172 44.97063
22 RFC_SCrec 094930 0.00371 46.47535
23 RFC_SCf1 0.96239 0.00239 4498098

Figure 4. Computation Time of Models

In terms of computational efficiency, Logistic
Regression is the fastest, with times ranging from
approximately 6.85 to 8.53 seconds. The Decision Tree
model is comparably fast, with times around 2.70t0 3.71
seconds. The Random Forest model, however, takes
considerably longer, ranging from about 44.90 to 48.95
seconds, which is expected given that it builds multiple
trees and combines their results. While the Random
Forest model outperforms the other two in terms of
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predictive metrics, it requires significantly more
computational time, which might be a consideration in
practical applications. Logistic Regression, after
scaling, shows improved performance, and its quick
computation makes it an attractive model for situations
where speed is a critical factor. Decision Trees offer a
good balance between speed and performance, with

db results, results =

model : LOGI -
model
model :

model : LOG

model : T
model :
model : %
model : X | B S
model : RFC -

model
model : RF(
RFC

RFC SC

model :
46.46499

time :

- time : ¢

model :
mode]

RFC SC 97063

model : RFC SC - time : 4

model : RFC SC - time :

feature scaling not significantly affecting its results. The
choice between these models would ultimately depend
on the specific requirements of the application,
including the acceptable trade-off between accuracy and
computational resources. Test harness result can be seen
on Figure 5.

test harness(models, X val bal sample, y val bal sample, 5

Figure 5. Test Harness

As presented in the Figure 5, The logs indicate multiple
runs of a Logistic Regression model, with and without
feature scaling (denoted as LOGI_SC). The times
recorded for these runs show that the model takes, on
average, about 8 seconds to complete the test harness
function. Logistic Regression is a foundational machine
learning algorithm that models the probability of a
binary outcome. It is generally favored for its simplicity
and efficiency, especially in cases where the relationship
between the independent variables and the binary
outcome is approximately linear. The scaled version
(LOGI_SC) implies that the data has been standardized
or normalized to improve the model's performance,
which can be particularly beneficial for Logistic
Regression as it relies on the optimization of a loss
function that can converge faster when features are on
the same scale. Decision Trees are recorded next, also
both in scaled (DCT_SC) and unscaled forms. These
models are significantly faster, completing the test
harness in roughly 2.7 seconds. This efficiency stems
from the Decision Tree's flowchart-like structure, where
binary decisions are made at each node, leading to a final
classification at the leaves. Decision Trees are highly
interpretable and do not require feature scaling, which is
consistent with the similar execution times observed for

DCT and DCT_SC. Finally, the Random Forest models,
which are ensembles of Decision Trees, show a much
higher execution time, averaging around 48 seconds.
This substantial increase in time is expected due to the
complexity of Random Forest, which builds multiple
Decision Trees on various sub-samples of the dataset
and averages their predictions. The nature of this
algorithm makes it robust to overfitting and generally
more accurate than a single Decision Tree, at the cost of
increased computational complexity. Similar to
Decision Trees, Random Forests do not inherently
benefit from feature scaling (RFC_SC), as evidenced by
the consistent execution times regardless of scaling.

In terms of the test harness function itself, the usage of
cross-validation (CV) with five folds suggests a robust
evaluation methodology. In CV, the dataset is split into
five parts, and the model is trained and tested five times,
with each part being used as the test set once. This
method provides a thorough assessment of the model's
performance and generalizability to new data. From
these execution times, one can infer that while Logistic
Regression and Decision Trees are quicker to train and
evaluate, Random Forests take a considerably longer
time. This trade-off between time and predictive
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performance is a common consideration in machine
learning. Practitioners must decide whether the
improvement in prediction accuracy with Random
Forest is worth the additional computation time, which
may be a critical factor in real-time applications or when
working with very large datasets. The information from
the test_harness function is valuable for understanding
not only the performance of the models but also the
computational demands they place on the system. Such
insights are crucial when it comes to selecting the right
model for deployment in production environments,
where both accuracy and efficiency need to be balanced
according to the application's requirements.

4. Conclusion

Our findings reveal a nuanced landscape of model
efficacy and computational efficiency. The Logistic
Regression model demonstrated admirable predictive
performance, particularly when feature scaling was
applied, suggesting its utility in scenarios where model
interpretability and operational speed are paramount.
The Decision Tree model offered a compelling balance
between speed and performance, reinforcing its
reputation as a versatile and interpretable classifier.
However, it was the Random Forest model that emerged
as the superior performer in terms of accuracy,
precision, recall, and F1 score, albeit with significantly
higher computational demands. The scaled versions of
these models (denoted with " _SC"), particularly for
Logistic Regression, hinted at the importance of feature
normalization in enhancing model predictions. Notably,
such scaling did not markedly affect the tree-based
models, underscoring their inherent robustness to
feature magnitude variations. Reflecting on our
methodological approach, the use of cross-validation
provided a comprehensive understanding of model
generalizability, while the Synthetic Minority Over-
sampling Technique (SMOTE) addressed the common
issue of class imbalance in cybersecurity datasets.
Despite the strengths of our research, we acknowledge
certain limitations. The scope of computational
resources and the potential for model tuning were not
exhaustively explored, which could yield further
improvements in model performance. Moreover, the
dynamic and evolving nature of DDoS attack patterns
necessitates ongoing model adaptation and validation.
For future work, we recommend the exploration of
hybrid models and deep learning architectures, which
may uncover new dimensions of predictive accuracy.
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