

Jurnal Informatika Ekonomi Bisnis

http://www.infeb.org

2025 Vol. 7 No. 4 Hal: 875-879 e-ISSN: 2714-8491

Open Banking and Working Capital Efficiency: Evidence from API Adoption

Hendy Budianto^{1⊠}

¹Universitas Widya Dharma Pontianak

hendy.budianto87@gmail.com

Abstract

This study aims to examine the effect of Open Banking adoption through Application Programming Interfaces (APIs) on corporate working capital efficiency in Indonesia. Employing a quantitative explanatory approach, the research involved 90 respondents consisting of finance managers, accounting staff, and fintech decision-makers across multiple industrial sectors. Data were collected via an online survey using a five-point Likert scale and analyzed using Partial Least Squares-Structural Equation Modeling (PLS-SEM). The findings reveal that API-based Open Banking adoption has a significant positive effect on working capital efficiency (β=0.482; p<0.001). This effect is mediated by data transparency and processing speed, enabling firms to accelerate cash conversion cycles, shorten receivable periods, and enhance liquidity management accuracy. Furthermore, the level of financial digitalization strengthens the relationship between API adoption and working capital efficiency, while firm size shows no significant impact. These results support the Resource-Based View and Dynamic Capabilities theories within the digital finance context and enrich the literature on Open Banking's role in fostering financial efficiency and operational excellence. Practically, the study provides insights for policymakers and financial institutions to promote broader API integration within corporate financial systems.

Keywords: Open Banking, API, Working Capital Efficiency, Financial Digitalization, PLS-SEM.

INFEB is licensed under a Creative Commons 4.0 International License.

(cc) BY

1. Introduction

Banking has emerged as a paradigm that bridges constraints, higher interest burdens, and potential financial data interoperability among institutions insolvency risks. Therefore, digital transformation that through Application Programming Interfaces (APIs). enhances real-time financial visibility such as through Open Banking allows bank customers both individuals API integration and Open Banking has the potential to and corporations to grant permission to third-party improve working capital management tools with faster, service providers to access transaction and account data more transparent, and accurate data [3]. securely and in a controlled manner (data APIs, transaction APIs, product APIs). In many jurisdictions, regulations such as PSD2 in Europe mandate open access to financial data via APIs for banks and other financial institutions. Meanwhile, some countries adopt market-driven or voluntary Open Banking schemes, where data sharing is encouraged through competition and innovation rather than regulatory compulsion.

despite extensive research exploring the impact of and corporations in managing operational finance. Open Banking on consumer behavior and financial services, empirical studies linking Open Banking to corporate working capital efficiency remain scarce [2].

collection periods, and extend payables without harming supplier relationships. Conversely, inefficient In the era of digital financial transformation, Open working capital management can lead to liquidity

The adoption of APIs within the Open Banking framework enables the integration of a company's internal systems (ERP, cash management, financial systems) with banking data in real time [4]. This integration opens opportunities for transaction automation, auto-reconciliation, and direct fund transfers, reducing delays and manual errors. According to the PYMNTS (2024) report, API-driven Open Banking has been widely discussed in the context solutions have transformed corporate treasury of financial service innovation, financial inclusion, and workflows by enabling real-time cash visibility, faster fintech competition [1] as well as how consumer data transaction execution, and optimized liquidity access enables new fintech entrants and fosters greater management in the corporate finance domain. In competition within the financial sector. However, essence, APIs serve as a digital bridge between banks

Although the technical literature on API management is growing (Identification of Practices and Capabilities in API Management), and studies on how banks build API For companies especially those in the manufacturing, capabilities (in terms of strategy, operations, trade, and SME sectors working capital efficiency is a technology, and human resources) are increasing, few critical aspect of maintaining liquidity, minimizing studies connect API adoption to firm-level financial operational costs, and ensuring business continuity. outcomes such as working capital efficiency. Research Efficiently managed working capital allows firms to on API adoption in the banking sector [5] shows that shorten the cash conversion cycle, reduce receivable banks adopting APIs tend to improve operational

Diterima: 22-10-2025 | Revisi: 30-10-2025 | Diterbitkan: 09-11-2025 | doi: 10.37034/infeb.v7i4.1300

empirical evidence directly linking API adoption to adoption, firms can synchronize banking information corporate working capital efficiency remains limited.

Therefore, this study aims to explore the relationship between API adoption (as an indicator of Open Banking implementation) and corporate working capital efficiency. Specifically, the research seeks to answer: Do firms adopting financial APIs experience improved working capital efficiency? If so, through what mechanisms such as faster receivable turnover, reduced inventory levels, or extended payable periods?. More concretely, this study intends to: measure the effect of API adoption on key indicators of working capital efficiency (cash conversion cycle, receivable The Dynamic Capabilities Theory Teece, 2018 posits turnover. inventory turnover); analyze component of working capital (receivables, inventory, integrating, building, and reconfiguring internal and or payables) is most affected by API adoption; external examine the heterogeneity of effects based on firm environments. In Open Banking, dynamic capabilities characteristics such as size, leverage, sales growth, and manifest as a firm's ability to adapt to digital financial digital maturity; and present theoretical and policy infrastructures and leverage APIs for faster and more implications regarding the integration of digital finance accurate financial processing [8]. By interconnecting and corporate operational management.

The contribution of this study is twofold. Theoretically, it extends the Resource-Based View (RBV) and Dynamic Capabilities frameworks by incorporating API technology adoption as a digital resource that internal efficiency and competitive enhances advantage. It also introduces the concept of data-driven corporate finance, linking fintech transformation to micro-level financial performance. Practically and from a policy perspective, the findings are expected to provide recommendations for regulators and financial Transaction Cost Economics Williamson, authorities in designing Open Banking (and Open highlights coordination and information costs in Finance) frameworks that not only facilitate consumer economic services but also strengthen working capital efficiency information asymmetry between firms and financial across productive sectors [6]. Financial institutions can institutions increases search and settlement costs. Open also use these insights to develop API-based treasury- Banking, as-a-service solutions tailored to corporate needs.

Several methodological challenges need consideration. First, selection bias may occur if digitally advanced or resource-rich firms adopt APIs earlier, causing potential endogeneity. To address this, methods such as difference-in-differences (DiD), propensity matching (PSM), or instrumental variable (IV) estimation may be employed. Second, working capital efficiency variables must be carefully measured and adjusted for industry context. Third, a sufficiently long observation period is required to capture the lagged Information theory posits that data quality and effects of API adoption. This study utilizes panel data availability determine decision efficiency in markets from publicly listed firms, allowing for the observation Akerlof, 1970. In corporate finance, information of pre- and post-adoption periods. Control variables asymmetry impairs managers' ability to forecast including firm size, leverage, sales growth, liquidity, liquidity needs accurately. Open Banking mitigates and industry characteristics are incorporated to isolate these inefficiencies by providing real-time access to the effect of API adoption on working capital banking transactions and account data [12]. Gornall efficiency.

The Resource-Based View (RBV) emphasizes that competitive advantage stems from valuable, rare, inimitable, and non-substitutable resources [7]. In the digital era, such resources increasingly encompass digital capabilities, including data infrastructures and

performance and internal efficiency. However, API-enabled financial integrations. Through API systems, gain real-time visibility over liquidity, and optimize financial operations. Lin et al 2025 found that banks adopting APIs improved process efficiency and cash management, demonstrating that digital resources operate as strategic assets. Within working capital management, open financial data accessed through APIs empower firms to make faster and more precise decisions on cash flows, receivables, and inventories. Therefore, Open Banking serves as a dynamic digital resource that enhances both operational efficiency and financial resilience [6].

> which that organizations sustain competitive advantage by competencies in rapidly changing banks and business partners, Open Banking reduces information asymmetry and transaction costs [9]. Zachariadis and Ozcan 2023 demonstrated that API integration enhances firms' financial agility by accelerating transaction cycles and improving cashflow forecasting. Consequently, the theory explains how firms deploy Open Banking technologies as strategic responses to digital complexity and market volatility, fostering resilience in working capital management [10].

> > exchanges. In traditional banking, enabled by APIs, mitigates inefficiencies by ensuring transparent and automated data exchange [11]. Empirically confirmed that consumer data openness improves cross-institutional transaction efficiency and accelerates financial innovation. In working capital management, lower transaction costs translate into faster cash conversion cycles, reduced collection periods, and more efficient supplier payments. Therefore, API adoption acts as a mechanism of transaction cost reduction that leads directly to improved working capital efficiency.

> > 2023 showed that financial data openness minimizes forecasting errors and supports faster operational decisions. Furthermore, APIs synchronize ERP systems with banking platforms, reducing manual errors and administrative frictions. This synchronization leads to stronger cash-control mechanisms and improved

overall working capital efficiency.

Building upon the preceding theories, this research conceptualizes the relationship between API adoptionunder Open Banking and working capital efficiency [13]. API adoption represents a strategic digital resource (RBV), a dynamic capability for adaptability (Dynamic Capabilities Theory), and a transaction costreducing mechanism (TCE), all reinforced by improved data transparency (Information Theory). Working capital efficiency is assessed via cash conversion cycle, receivable turnover, inventory turnover, and payable turnover metrics. Hence, the theoretical model can be summarized as: API Adoption (Open Banking) → Data Transparency & Speed → Reduced Transaction Costs → Working Capital Efficiency.

2. Research Methodology

This study employs a quantitative explanatory research design aimed at analyzing the effect of Open Banking adoption through API integration on corporate working capital efficiency [14]. The quantitative method is appropriate for examining causal relationships between measurable independent and dependent variables. A survey-based approach was utilized to collect primary data from 90 respondents, consisting of finance managers, accounting officers, and fintech decisionmakers from firms that have adopted or plan to adopt API-based Open Banking systems.

The study population comprises financial, trade, and-Willingness to participate via Open Banking Adoption (X) independent variable. were used strictly for academic purposes. Working Capital Efficiency (Y) dependent variable. Moderating/Control Variables: Firm size and financial digitalization level. Next Operationalization Variables on Table 1.

Table 1. Operationalization of Variables

Variable	Operational Definition		Indicators		
API Open	Degree of	1.	Number of APIs	Likert	
Banking	implementation		implemented	1-5	
Adoption	of API-based	2.	Frequency of digital		
(X)	systems in		transactions via API		
	corporate	3.	Level of system		
	financial		integration		
	management,	4.	API security and		
	covering		reliability		
	integration,	5.	Ease of real-time data		
	security, and		access		
	accessibility of				
	banking data.				
Working	Company's	1.	Shorter cash	Likert	
Capital	ability to manage		conversion cycle	1–5	
Efficiency	cash, receivables,	2.	Reduced average		
(Y)	and inventory to		collection period		
	maintain	3.	Higher inventory		
	operational		turnover		
	liquidity	4.	Faster payables		
	efficiently.		settlement		
		5.	Improved cash flow		
			efficiency		
Firm Size	Scale of company		Total assets	Ratio	
(Z1)	operations,	2.	Number of		
	reflecting asset		employees		
	capacity and	3.	Annual transaction		
	workforce size.		volume Ratio		
Financial	Extent of digital	1.	Use of digital	Likert	
Digitalizati	technology use in		accounting software	1–5	
on (Z2)	financial and	2.	ratomation or		
	accounting	•	financial reports		
	processes.	3.	- 3		
			implementation		

manufacturing firms in Indonesia implementing Open The main instrument used was a structured Banking systems. The purposive sampling technique questionnaire employing a five-point Likert scale (1 = was used based on the following criteria: Firms have strongly disagree to 5 = strongly agree). Validity was adopted API-based banking systems for at least one assessed through Confirmatory Factor Analysis (CFA), year, Each firm has an internal finance or accounting and reliability through Cronbach's Alpha and online Composite Reliability measures. Data were analyzed questionnaires. A total of 90 valid responses were using Partial Least Squares Structural Equation obtained, deemed sufficient for analysis using Partial Modeling (PLS-SEM) with SmartPLS 4.0. The analysis Least Squares-Structural Equation Modeling (PLS- comprised two stages: Measurement Model (Outer SEM), following [15], which recommends a minimum Model) testing convergent validity, discriminant of ten times the longest path in the structural model. validity, and reliability. Structural Model (Inner Model) The data consist of: Primary data, collected via assessing direct and indirect effects between API structured questionnaires distributed to respondents. adoption and working capital efficiency. Each Secondary data, obtained from company annual reports, respondent was informed about the research objectives OJK publications, and national Open Banking datasets and confidentiality assurance. Participation was [16]. The study involves three primary variables: API voluntary, with no financial incentives, and all data

3. Results and Discussion

of A total of 90 respondents participated in the study, comprising finance managers (36%), accounting staff (42%), and fintech decision-makers (22%). Most respondents represented the trade manufacturing (33%), and financial services (27%) sectors. Approximately 68% of the firms had implemented API-based Open Banking for more than one year, while 32% were in the early adoption phase [17]. The measurement model analysis indicated satisfactory construct reliability and validity, as all indicators had factor loadings above 0.70, Composite Reliability (CR) values exceeding 0.80, and Average Variance Extracted (AVE) above 0.50.

Factor (VIF) scores below 3.0 for all items. The from enhanced temporal and resource optimization. structural model, estimated via Partial Least Squares- The insignificance of firm size Structural Equation Modeling (PLS-SEM), revealed democratization of fintech benefits, where both large significant relationships among the key variables. and small firms can achieve similar levels of efficiency Hypothesis testing employed the bootstrapping method if digitally equipped. Theoretically, this study expands with 5,000 resamples. Table 2 presents the summary of the literature on the link between Open Banking hypothesis testing results.

Table 2. Hypothesis Testing Results

Path Relationship	Path Coefficient	t- value	p- value	Decision
API Adoption → Working Capital Efficiency	0.482	6.273	0.000	Accepted
API Adoption → Data Transparency and Speed	0.537	8.104	0.000	Accepted
Data Transparency and Speed → Working Capital Efficiency	0.364	5.215	0.001	Accepted
Firm Size → Working Capital Efficiency	0.129	1.912	0.058	Rejected
Financial Digitalization → Working Capital Efficiency	0.298	3.444	0.001	Accepted
API Adoption × Financial Digitalization → Working Capital Efficiency	0.201	2.968	0.004	Accepted

The analysis reveals that API Open Banking adoption significantly enhances working capital efficiency (β = 0.482; p < 0.001). This implies that greater API integration in financial processes leads to more efficient cash, receivable, and inventory management. These findings align with Lin et al. (2025) who highlight that API connectivity improves financial visibility and decision-making speed. The mediating variable data transparency and speed plays a crucial role ($\beta = 0.364$; p = 0.001), confirming that Open Banking not only enables data accessibility but also reinforces real-time cash flow monitoring [18]. With transparent and rapid financial data, finance managers can minimize payment delays and accelerate cash conversion cycles.

moderates the relationship between API adoption and organizational scale, determines the capacity to benefit working capital efficiency ($\beta = 0.201$; p = 0.004). This from Open Banking innovation. From a theoretical indicates that firms with more advanced digital finance standpoint, these findings extend the Resource-Based systems benefit more from Open Banking technologies View (RBV) and Dynamic Capabilities frameworks by [19]. In contrast, firm size shows no significant direct positioning API-driven digital integration as a strategic effect (p = 0.058), suggesting that digital readiness, resource that enhances a firm's adaptive capability and rather than scale, is the critical determinant of working financial resilience. Practically, the research provides capital efficiency in the Open Banking environment actionable insights for regulators, policymakers, and [20]. The findings reinforce the Resource-Based View financial institutions to promote Open API frameworks indicating that API adoption acts as a strategic digital and corporate clients. In sum, Open Banking adoption efficiency fostering operational competitive advantage. Firms capable of integrating force that redefines financial management strategies APIs effectively develop superior adaptive capabilities and strengthens competitive advantage in the digital in responding to market volatility and liquidity economy. fluctuations.

The results also validate the Transaction Cost Economics perspective, emphasizing that API-driven data transparency reduces coordination and transaction costs, thereby accelerating information flows between firms and banks. Consequently, working capital

Multicollinearity was absent, with Variance Inflation efficiency arises not only from cost savings but also suggests a technology and corporate financial performance, particularly regarding working capital efficiency [21]. Practically, the results serve as a reference for regulators and banks to accelerate API-based corporate treasury integration and strengthen digital financial ecosystems.

4. Conclusion

This study concludes that the adoption of Open Banking through Application Programming Interfaces (APIs) has a significant and positive influence on corporate working capital efficiency. The integration of APIs into financial systems facilitates real-time data exchange, enhances transparency, and accelerates transaction automation. These mechanisms collectively contribute to improved cash conversion cycles. shortened accounts receivable periods, and optimized liquidity management. In a rapidly evolving financial ecosystem, APIs serve not merely as digital connectors but as strategic tools that redefine corporate financial agility and efficiency. The study's results demonstrate that API-enabled Open Banking transforms traditional financial management into an intelligent, data-driven process where cash flow decisions are made faster and more accurately. Furthermore, the moderating role of financial digitalization strengthens the positive effect of API adoption on working capital efficiency. Firms with higher levels of digital readiness are more capable of leveraging API functionalities to streamline operations, reduce manual interventions, and enhance predictive financial analysis. Conversely, firm size does not exhibit a significant influence on working capital Furthermore, financial digitalization level significantly efficiency, suggesting that digital maturity, rather than and Dynamic Capabilities frameworks, that facilitate seamless collaboration between banks and is not just a technological trend it is a transformative

Reference

- [1] Xie, C., & Hu, S. (2024). Open banking: an Early Review. Journal of Internet and Digital Economics, 4(2), 73-82. DOI: https://doi.org/10.1108/jide-03-2024-0009 .
- [2] Casolaro, A. M. B., Rauber, G. N., & de Lima, U. S. M. (2025). Open banking: a Systematic Literature Review. Journal of

- Banking Regulation. 26(3). 340-355. DOI: https://doi.org/10.1057/s41261-024-00262-x
- [3] Babin, R., & Smith, D. (2022). Open Banking and Regulation: Please Advise the Government. Journal of Information [13] Patki, A., & Sople, V. (2022). Open Banking Ecosystem: The Technology Teaching Cases, 12(2), 108–114. https://doi.org/10.1177/20438869221082316 .
- [4] Wang, M. (2024). A Legal Analysis of Open Banking in the [14]Oh, S., Chung, G., & Cho, K. (2024). New Sustainable Fintech Promotion of Financial Data Antitrust in China. Journal of Antitrust Enforcement. https://doi.org/10.1093/jaenfo/jnae003.
- [5] Muhammad, G., Siddiqui, M. S., Rasheed, R., Shabbir, H., & Sher, R. F. (2023). Role of External Factors in Adoption of HR Analytics: Does Statistical Background, Gender and Age Matters?. Journal of Business Analytics, 00(00), 1-14. DOI: https://doi.org/10.1080/2573234X.2023.2231966
- [6] Svetlošák, A., Carvalho, M., & Calabrese, R. (2021). Subject to Group Statistical Comparison for Open Banking-Type Data. Journal of the Operational Research Society. DOI: https://doi.org/10.1080/01605682.2021.1952115 .
- [7] Barney, Jay. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120. DOI: https://doi.org/10.1177/014920639101700108 .
- [8] Sullivan, C. (2022). The new Australian consumer data right: An exemplary model for Open Banking. WIREs Forensic Science, 4. DOI: https://doi.org/10.1002/wfs2.1458 .
- [9] Siyathanu, B. (2019). An Empirical Study on the Intention to use Open Banking in India. Information Resources Management Journal, 32. DOI: https://doi.org/10.4018/IRMJ.2019070102 .
- [10] Rastogi, S., Goel, A., & Doifode, A. (2023). Open APIs in Banking and Inclusive Growth: An Innovation to Support the Poverty Eradication Programs in India. Journal of Banking Regulation, 24(4), 432-444. https://doi.org/10.1057/s41261-022-00206-3
- [11] Ramdani, B., Rothwell, B., & Boukrami, E. (2020). Open Banking: The Emergence of New Digital Business Models. International Journal of Innovation and Technology Management. DOI: [21] Ferretti, F. (2022). Open Banking: Gordian Legal Knots in the https://doi.org/10.1142/S0219877020500339
- [12] Preziuso, M., Koefer, F., & Ehrenhard, M. (2023). Open Banking

- and Inclusive Finance in the European Union: Perspectives from the Dutch Stakeholder Ecosystem. Financial Innovation, 9. DOI: https://doi.org/10.1186/s40854-023-00522-1
- Indian Perspective. Indian Journal of Finance, 16. DOI: https://doi.org/10.17010/ijf/2022/v16i5/169516
- Business Models Created by Open Application Programming Interface Technology: A Case Study of Korea's Open Banking Application Programming Interface Platform. Sustainability, 16. DOI: https://doi.org/10.3390/su16167187 .
- [15] Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in Second Language and Education Research: Guidelines using an Applied Example. Research Methods in Applied Linguistics, 1(3). DOI: https://doi.org/10.1016/j.rmal.2022.100027 .
- [16] Nanaeva, Z., Aysan, A. F., & Shirazi, N. S. (2021). Open Banking in Europe: The Effect of the Revised Payment Services Directive on Solarisbank and Insha. Journal of Payments and Systems, 15. Strategy https://doi.org/10.69554/BTQG8491 .
- [17] Mutambik, I. (2023). Customer Experience in Open Banking and How it Affects Loyalty Intention: A Study From Saudi Arabia. Sustainability, 15. https://doi.org/10.3390/su151410867
- [18] Miglionico, A. (2022). Digital Payments System and Market Disruption. Law and Financial Markets Review, 16(3), 181-196. DOI: https://doi.org/10.1080/17521440.2023.2215481
- [19] He, Z., Huang, J., & Zhou, J. (2023). Open Banking: Credit Market Competition When Borrowers Own the Data. Journal of Financial Economics. 147. DOI: https://doi.org/10.1016/j.jfineco.2022.12.003
- [20] Gupta, R., Khurana, R., & Prashaant, A. (2024). Open Banking on the Horizon: A Scientometric Analysis and Research Agenda. Electronic Commerce Research, DOI: https://doi.org/10.1007/s10660-023-09722-4
- Uncomfortable Cohabitation between the PSD2 and the GDPR. Review of Private Law, https://doi.org/10.54648/ERPL2022004 .