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Abstract  

Obesity is a significant global health concern, necessitating accurate and efficient diagnostic tools to classify individuals based 

on obesity levels. This study investigates the performance of five deep learning architectures: Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional 

LSTM (BiLSTM) in classifying obesity levels using structured data. The dataset comprises clinical, demographic, and lifestyle 

features, and is preprocessed through normalization, label encoding, and Synthetic Minority Oversampling Technique 

(SMOTE) to address class imbalance. Each model was evaluated using accuracy, precision, recall, and F1-score metrics under 

stratified 10-fold cross-validation. The results indicate that MLP achieved the highest performance across all metrics, with an 

accuracy of 99.05%, followed closely by CNN at 98.77%. Sequential models, including LSTM, GRU, and BiLSTM, exhibited 

comparatively lower performance, achieving accuracies of 83.80%, 86.59%, and 86.78%, respectively. The superior 

performance of MLP and CNN underscores their suitability for structured datasets with static features, while the sequential 

models struggled due to the lack of temporal dependencies in the data. This study highlights the importance of aligning model 

architecture with dataset characteristics for optimal performance. The findings suggest that MLP and CNN are effective choices 

for obesity classification tasks, providing robust and computationally efficient solutions. Future work could explore hybrid 

models and incorporate temporal features to enhance the performance of sequential architecture.  

Keywords: Obesity Classification, Deep Learning Models, Multilayer Perceptron, Convolutional Neural Networks, Sequential 

Models in Healthcare. 
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1. Introduction 

Obesity, characterized by excessive accumulation of 

body fat, has become a leading public health crisis 

worldwide [1], [2], [3]. Its prevalence has doubled over 

the past four decades, making it a critical focus of global 

health policies [4], [5], [6]. The World Health 

Organization (WHO) estimates that over 650 million 

adults and 340 million children and adolescents 

worldwide are classified as obese [7]. Obesity 

contributes significantly to non-communicable diseases 

such as cardiovascular disorders, diabetes, and certain 

cancers, placing immense strain on healthcare systems 

[8]. Effective prediction and diagnosis are vital to 

mitigating the adverse health and economic impacts of 

this condition [9]. However, traditional diagnostic 

methods, which rely heavily on body mass index (BMI) 

and subjective clinical assessments, often fail to capture 

the multifactorial nature of obesity, highlighting the 

need for data-driven, predictive approaches [10], [11], 

[12]. 

Recent advancements in artificial intelligence (AI) have 

enabled significant progress in healthcare prediction 

models, including obesity diagnosis [13]. Traditional 

machine learning (ML) methods, such as decision trees, 

support vector machines (SVM), and logistic regression, 

have been widely employed for predictive tasks in 

healthcare due to their simplicity and interpretability 

[14]. For instance, a study utilized decision tree models 

to predict childhood obesity using dietary patterns and 

physical activity data, achieving moderate accuracy 

[15]. Similarly, another study implemented SVM to 

classify obesity in adults based on socio-demographic 

and clinical features, emphasizing the importance of 

feature engineering [16]. However, these models often 

struggle to manage high-dimensional data and fail to 

capture complex, non-linear interactions between 

features, limiting their performance in real-world 

scenarios. 

To address these limitations, researchers have 

increasingly turned to deep learning (DL) architectures, 

which offer superior performance in modeling complex, 

high-dimensional data. Convolutional neural networks 

(CNNs), initially developed for image recognition tasks, 

have demonstrated their utility in healthcare domains by 

extracting meaningful feature representations from 

structured data [17]. For example, a study applied CNNs 

to analyze obesity-related datasets, achieving substantial 

performance improvements compared to traditional ML 

models [18]. Similarly, recurrent neural networks 

(RNNs) and their variants, such as long short-term 

memory (LSTM) networks and gated recurrent units 

(GRUs), have been employed to capture temporal and 

sequential patterns in health records. Studies by certain 

researchers highlight the potential of RNN-based 

models in predicting obesity progression based on time-
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series data, emphasizing the role of recurrent 

architectures in handling temporal dependencies [19], 

[20]. 

While CNNs and RNNs have demonstrated promising 

results individually, hybrid approaches combining 

multiple architectures have emerged as state-of-the-art 

solutions in predictive healthcare. Bidirectional LSTMs 

(BiLSTMs), for instance, leverage both forward and 

backward temporal dependencies to enhance predictive 

accuracy. In obesity prediction, BiLSTMs have been 

used to analyze sequential dietary and activity data, 

outperforming unidirectional models [21]. Despite these 

advancements, limited research exists on systematically 

comparing the performance of different DL 

architectures, particularly on datasets involving 

demographic, behavioral, and physiological attributes. 

This gap hinders the identification of the most effective 

DL models for obesity prediction and underscores the 

need for a comprehensive comparative study. 

This research aims to address this gap by evaluating five 

state-of-the-art DL models: multilayer perceptron 

(MLP), CNN, LSTM, GRU, and BiLSTM on a dataset 

comprising clinical and lifestyle features associated with 

obesity. Unlike previous studies that focus on individual 

models or lack robust evaluation frameworks, this study 

employs a rigorous methodology incorporating ten-fold 

stratified cross-validation. This approach ensures 

unbiased performance assessment while providing 

insights into the generalizability of each model. 

Additionally, the preprocessing pipeline involves 

standardized techniques such as label encoding and 

feature scaling to ensure consistency and 

reproducibility. 

The significance of this study lies in its comprehensive 

evaluation framework and practical implications. The 

MLP, with its dense, fully connected architecture, serves 

as a baseline for comparison, while the CNN and RNN-

based models explore advanced feature extraction and 

sequence modeling capabilities. By systematically 

comparing these architectures, this research provides 

critical insights into their suitability for obesity 

prediction tasks. Furthermore, the findings have 

practical relevance for developing automated diagnostic 

tools, enabling early interventions and personalized 

healthcare strategies. The remainder of this article is 

organized as follows. Section 2 describes the research 

method including dataset, preprocessing techniques, 

model architectures, and evaluation metrics. Section 3 

provides an in-depth analysis of experimental results 

and discusses the implications and limitations of the 

findings. Finally, Section 4 concludes the study by 

summarizing key contributions and outlining future 

research directions.  

 

 

2. Research Method 

2.1. Dataset 

The dataset used in this study is a rich and diverse 

collection of clinical, demographic, behavioral, and 

physiological attributes relevant to obesity prediction 

[22]. It consists of ( 𝑁 ) samples, each described by 

( 𝑑 )-dimensional feature vectors (𝑥𝑖 ∈ 𝑅𝑑) and a 

corresponding categorical target label (𝑦𝑖), representing 

the obesity class. The dataset offers a comprehensive 

view of factors influencing obesity, making it well-

suited for evaluating the effectiveness of deep learning 

models. This section describes the dataset’s structure, 

characteristics, and the specific challenges encountered 

in its preparation. 

2.2. Dataset Overview 

The dataset is formally represented as 𝒟 = {(𝑥𝑖 , 𝑦𝑖) ∣
𝑖 = 1,2, … , 𝑁}, where each (𝑥𝑖) contains a combination 

of numerical and categorical features capturing the 

clinical, demographic, and behavioral aspects of an 

individual. The target variable (𝑦𝑖) is a categorical value 

indicating the individual’s obesity classification, which 

is divided into ( 𝐾 ) classes. The features in (𝑥𝑖) include 

numerical measurements such as age, BMI, daily caloric 

intake, and exercise duration, as well as categorical 

variables such as gender, physical activity level, and 

dietary habits. Numerical features like age and BMI are 

critical for capturing physiological trends related to 

obesity. For example, BMI is a continuous variable 

defined as the ratio of weight (in kilograms) to the 

square of height (in meters). This feature plays a pivotal 

role in obesity classification, as it directly measures 

body fatness. Other numerical features, such as caloric 

intake and exercise duration, provide insights into an 

individual’s lifestyle and activity levels, which are 

strongly correlated with obesity. Categorical features, 

such as gender and smoking status, further enrich the 

dataset by adding behavioral and demographic 

dimensions. The target variable (𝑦𝑖) is multi-class, 

categorizing individuals into one of several predefined 

obesity levels, including underweight, normal weight, 

overweight, and three classes of obesity (Class I, Class 

II, and Class III). This classification reflects the severity 

of obesity and provides an opportunity to investigate the 

performance of deep learning models in handling multi-

class prediction tasks. 

2.3. Statistical Characteristics of the Dataset 

The dataset exhibits a variety of statistical properties 

that influence the model design and evaluation. One of 

the critical aspects is the class distribution, which is 

imbalanced. Certain obesity categories, such as 

underweight and Obesity Class III, are underrepresented 

compared to others. This imbalance in class proportions 

can lead to biased models that favor majority classes, a 

challenge that requires mitigation during preprocessing. 

In terms of feature distribution, numerical variables such 
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as BMI and caloric intake are often skewed, with 

extreme values representing outliers in the data. For 

instance, individuals with extremely high BMIs or 

caloric intakes are likely to fall into the obesity classes, 

while those with unusually low BMIs are categorized as 

underweight. These outliers, though rare, can have a 

disproportionate impact on the training process by 

influencing model parameters. Correlations between 

features also play a crucial role in understanding the 

dataset’s structure. For example, BMI is positively 

correlated with caloric intake but negatively correlated 

with exercise duration. These correlations highlight the 

interdependence among features and underscore the 

need for models capable of capturing such complex 

relationships. The Pearson correlation coefficient is used 

to quantify these relationships can be seen on Equation 

1. 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑁

𝑖=1

  (1) 

Where (𝑥̅) and (𝑦̅) represent the means of ( 𝑥 ) and 

( 𝑦 ), respectively. Another notable characteristic is the 

variability in feature scales. Numerical features like 

BMI and caloric intake have different ranges and units, 

which can introduce challenges during training, 

particularly when using gradient-based optimization 

methods. Models are sensitive to feature scales, and 

discrepancies can result in slower convergence or 

suboptimal solutions. 

2.4. Challenges in the Dataset 

The dataset presents several challenges that necessitate 

careful preprocessing. One of the primary issues is the 

presence of missing data, where certain records have 

incomplete values for numerical or categorical features. 

Missing data, represented as (𝑥𝑖𝑗 = NaN), reduces the 

effective size of the dataset and can lead to biased 

models if not handled properly. This study opts for a 

complete case analysis by removing all records with 

missing values, ensuring that the cleaned dataset is 

defined as 𝒟cen = {𝑥𝑖, 𝑦𝑖 ∣ 𝑥𝑖 is complete}. Class 

imbalance is another significant challenge, as the dataset 

contains disproportionately fewer samples for certain 

obesity categories. This imbalance skews model 

training, leading to predictions biased toward majority 

classes. To address this issue, oversampling techniques 

such as Synthetic Minority Oversampling Technique 

(SMOTE) are applied. SMOTE generates synthetic 

examples for minority classes by interpolating between 

existing samples and their nearest neighbors in feature 

space which can be seen on Equation 2. 

𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑥𝑖 + λ(𝑥𝑗 − 𝑥𝑖)  (2) 

Where (λ ∼ Uniform(0,1)), and (𝑥𝑗) is a nearest 

neighbor of (𝑥𝑖). Outliers in numerical features pose 

additional challenges. Extreme values in BMI or caloric 

intake, often arising from measurement errors or rare 

cases, can disproportionately influence model training. 

Outlier detection and mitigation techniques are 

considered during preprocessing to ensure that these 

extreme values do not dominate the learning process. 

The diversity in feature types: numerical and categorical 

further complicates preprocessing. Numerical features 

require normalization to address differences in scale, 

while categorical features require encoding to convert 

them into numerical representations suitable for 

machine learning models. For categorical features, label 

encoding is applied, transforming each category into a 

unique integer. For example, a feature (𝑥𝑗) with 

categories ({𝑐1, 𝑐2, … , 𝑐𝑚}) is mapped to integers 

( {0, 1, … , 𝑚 − 1} ) using the function (ϕ𝑗: 𝐶𝑗 →

{0,1, … , 𝑚 − 1}), where (𝑥𝑖𝑗 = ϕ𝑗(𝑥𝑖𝑗)). 

2.5. Dataset Preparation 

The dataset preparation process involves multiple steps 

to ensure that it is ready for model training and 

evaluation. First, missing values are addressed by 

removing incomplete records, resulting in a clean 

dataset. Next, categorical features are encoded using 

label encoding, while the target variable is transformed 

into a one-hot encoded format to facilitate multi-class 

classification. Numerical features are normalized using 

z-score normalization, ensuring that all features have 

zero mean and unit variance. The normalized value of a 

numerical feature (𝑥𝑗) is given by Equation 3. 

𝑥𝑗
norm =

𝑥𝑗−μ𝑗

σ𝑗
   (3) 

Where (μ𝑗) and (σ𝑗) are the mean and standard 

deviation of (𝑥𝑗), respectively. Finally, the dataset is 

split into training and testing subsets using stratified 

sampling to preserve the class distribution. For models 

requiring sequential input, such as LSTM or CNN, the 

feature matrix (𝑋) is reshaped to include a temporal 

dimension, resulting in (𝑋𝑠𝑒𝑞 ∈ 𝑅𝑁×𝑑×𝟙). This ensures 

compatibility with sequence-based architecture. 

2.6. Preprocessing Techniques 

Preprocessing is a crucial step in machine learning 

workflows, especially when working with datasets that 

include a mix of numerical and categorical features, 

missing values, and imbalanced class distributions. 

Proper preprocessing ensures that the data is in a suitable 

format for model training and evaluation while 

addressing challenges such as inconsistent scales, 

missing data, and outliers. In this study, a systematic and 

rigorous preprocessing pipeline was applied to prepare 

the dataset for deep learning models. This subsection 

describes each preprocessing stage in detail, 

emphasizing the mathematical foundations and rationale 

behind each technique. 

2.6.1. Handling Missing Values 

Missing data is a common issue in real-world datasets 

and can occur for various reasons, such as data entry 
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errors, sensor malfunctions, or non-responses in 

surveys. In this dataset, missing values were observed in 

both numerical and categorical features. To address this, 

the complete-case analysis approach was employed, 

where records with missing values were removed 

entirely. Let (𝑥𝑖𝑗) denote the value of the ( 𝑗 )-th feature 

for the ( 𝑖 )-th sample. If (𝑥𝑖𝑗 = NaN) for any ( 𝑗 ), the 

entire sample ((𝑥𝑖 , 𝑦𝑖)) was excluded from the dataset. 

The cleaned dataset is mathematically expressed on 

Equation 4.  

𝒟𝒸ℓℯ𝒶𝓃 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝒟 ∣ ∀𝑗, 𝑥𝑖𝑗 ≠ NaN} (4) 

This approach ensures that no incomplete records are 

present during model training, thereby avoiding 

potential biases caused by missing data. Although this 

method reduces the overall size of the dataset, it 

guarantees that all samples used in the analysis are 

complete and consistent. 

2.6.2. Encoding Categorical Variables 

Categorical features are inherently non-numerical, and 

their direct use in machine learning models is not 

feasible. To make these features suitable for training, 

label encoding was applied to convert categorical values 

into numerical representations. Let (𝑥𝑗) represent a 

categorical feature with ( 𝑚 ) unique categories, 

denoted as (𝐶𝑗 = {𝑐1, 𝑐2, … , 𝑐𝑚}). A mapping function 

(ϕ𝑗: 𝐶𝑗 → {0,1, … , 𝑚 − 1}) was defined, where each 

category (𝑐𝑘) is assigned to a unique integer. The 

transformation for each sample (𝑥𝑖𝑗) is given by 𝑥𝑖𝑗 =

ϕ𝑗(𝑥𝑖𝑗), where (𝑥𝑖𝑗 ∈ 𝐶𝑗) is the original categorical 

value, and (ϕ𝑗(𝑥𝑖𝑗)) is the corresponding integer-

encoded value. This method preserves the ordinal 

relationships in categorical features where applicable.  

For the target variable (𝑦𝑖), a more advanced 

transformation, one-hot encoding, was used to represent 

the multi-class labels as binary vectors. For a dataset 

with ( 𝐾 ) classes, the one-hot encoded representation of 

(𝑦𝑖) is defined as 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝐾]𝑇, where (𝑦𝑖𝑘 =
1 if 𝑦𝑖 = 𝑘; 𝑦𝑖𝑘 = 0 otherwise). This representation 

ensures that the target variable is compatible with 

categorical cross-entropy loss functions used in multi-

class classification tasks. 

2.6.3. Normalization of Numerical Features 

Numerical features in the dataset, such as age, BMI, and 

caloric intake, exhibit varying scales and ranges. For 

example, BMI values typically range from 15 to 40, 

while caloric intake can range from hundreds to 

thousands of kilocalories. Such discrepancies in scale 

can adversely affect gradient-based optimization during 

model training. To address this issue, z-score 

normalization was applied to standardize all numerical 

features. For a given numerical feature (𝑥𝑗), its 

normalized value (𝑥𝑗
norm) is computed as 𝑥𝑗

norm =
𝑥𝑗−μ𝑗

σ𝑗
, 

where (μ𝑗) and (σ𝑗) are the mean and standard deviation 

of (𝑥𝑗) across the dataset, respectively on Equation 5 and 

Equation 6. 

μ𝑗 =
1

𝑁
∑ 𝑥𝑖𝑗

𝑁
𝑖=1      (5) 

σ𝑗 = √
1

𝑁
∑ (𝑥𝑖𝑗 − μ𝑗)

2𝑁
𝑖=1    (6) 

This transformation ensures that all numerical features 

have zero mean and unit variance, effectively mitigating 

the impact of feature scale discrepancies. Moreover, 

normalization helps prevent features with large ranges 

from dominating the learning process, leading to more 

stable and efficient optimization. 

2.6.4. Balancing Imbalanced Classes 

Class imbalance is a prevalent issue in many real-world 

datasets, including this one, where certain obesity 

categories, such as underweight and Obesity Class III, 

are significantly underrepresented. Without addressing 

this imbalance, models tend to favor majority classes, 

resulting in poor performance on minority classes. To 

mitigate this issue, the Synthetic Minority Oversampling 

Technique (SMOTE) was applied to generate synthetic 

examples for minority classes. SMOTE works by 

interpolating existing samples and their nearest 

neighbors in the feature space. For a minority class 

sample (xi), a synthetic sample (xsynthetic) is generated 

as Equation 7. 

xsynthetic = xi + λ(xj − xi)  (7) 

Where (λ ∼ Uniform(0,1)) is a random scalar, and (xj) 

is a randomly chosen nearest neighbor of (xi). By 

introducing synthetic samples, SMOTE effectively 

balances the class distribution and improves the model's 

ability to generalize to minority classes. 

2.6.5. Train-Test Splitting and Reshaping 

To evaluate the performance of the deep learning 

models, the dataset was divided into training and testing 

subsets using stratified sampling. Stratified sampling 

ensures that the class distribution in both subsets mirrors 

the overall class distribution in the dataset. Let (𝒟𝓉𝓇𝒶𝒾𝓃) 

and (𝒟𝓉ℯ𝓈𝓉) represent the training and testing subsets, 

respectively, such that 𝒟𝓉𝓇𝒶𝒾𝓃 ∪ 𝒟𝓉ℯ𝓈𝓉 = 𝒟, 𝒟𝓉𝓇𝒶𝒾𝓃 ∩
𝒟𝓉ℯ𝓈𝓉 = {}. For sequence-based models, such as LSTM 

and CNN, the feature matrix (𝑋) was reshaped to 

include a temporal dimension. For a dataset with ( 𝑁 ) 

samples and ( 𝑑 ) features, the reshaped input is 

represented as 𝑋𝑠𝑒𝑞 ∈ 𝑅𝑁×𝑑×𝟙. This reshaping ensures 

compatibility with convolutional and recurrent layers, 

which process data with temporal or spatial structures. 

By following this preprocessing pipeline, the dataset 

was transformed into a format that is robust, consistent, 

and well-suited for training deep learning models. Each 

step addressed specific challenges in the data, ensuring 

that the resulting models are not only accurate but also 

generally unseen data. 
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2.7. Model Architectures 

The models used in this study are designed to capture 

the complex relationships between the features in the 

dataset and the target obesity classification labels. A 

variety of deep learning architectures were explored, 

each tailored to exploit specific patterns in the data, such 

as non-linear interactions, temporal dependencies, and 

hierarchical feature representations. This subsection 

provides an in-depth explanation of the architecture, 

including their mathematical formulations and the 

rationale behind their design.  

The MLP is a fully connected feedforward neural 

network that serves as a baseline model in this study. It 

is designed to capture non-linear relationships between 

input features and the target labels. An MLP consists of 

an input layer, one or more hidden layers, and an output 

layer. Each layer applies a weighted transformation to 

the input, followed by a non-linear activation function. 

Let (𝑥 ∈ 𝑅𝑑) represent the input feature vector with 

( 𝑑 ) features. The forward propagation in the MLP is 

defined as Equation 8. 

(ℎ(𝑙) = 𝑓(𝑙)(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)), )   (8) 

Where ( 𝑙 =  1, 2, … , 𝐿 ). In this equation, (𝑊(𝑙)) is the 

weight matrix for layer ( 𝑙 ), (𝑏(𝑙)) is the bias vector, 

(ℎ(𝑙−1)) is the output from the previous layer (with 

(ℎ(0) = 𝑥)), and (𝑓(𝑙)) is the activation function. The 

ReLU activation function is used in the hidden layers, 

defined as (𝑓(𝑙)(𝑧) = max(0, 𝑧)). The output layer uses 

the softmax activation function, which converts the 

logits into probabilities, defined as Equation 9. 

𝑦𝑘̂ =
exp(𝑧𝑘)

∑𝐾
𝑗=1 exp(𝑧𝑗)

   (9) 

Where (𝑧𝑘) is the logit for class ( 𝑘 ) in the output layer, 

and ( 𝐾 ) is the total number of classes. Dropout 

regularization is applied after each hidden layer to 

reduce overfitting, where dropout randomly sets a 

fraction ( 𝑝 ) of the neurons in a layer to zero during 

training, expressed as  h ( ) = m ⊙ h(l), with(m ∼

Bernoulli(1 − p)).  

CNNs are designed to extract hierarchical features from 

structured data. While CNNs are commonly used in 

image processing, they are also effective for structured 

datasets when reshaped into a format suitable for 

convolution operations. The input (𝑥) is reshaped into 

(𝑋 ∈ 𝑅𝑑×𝟙), where ( 𝑑 ) is the number of features. The 

key operation in CNNs is the convolution, which applies 

a set of learnable filters (𝑊) to the input. For a one-

dimensional input, the convolution operation at position 

( 𝑡 ) is defined as Equation 10. 

ℎ𝑡 = 𝑓(∑ 𝑊𝑖𝑥𝑡+𝑖−1
𝑘
𝑖=1 + 𝑏)  (10) 

Where ( 𝑘 ) is the filter size, (𝑊𝑖) are the filter weights, 

( 𝑏 ) is the bias term, and ( 𝑓 ) is the activation function 

(ReLU in this study). Pooling layers are applied after 

convolution to reduce the dimensionality and retain the 

most significant features, where max pooling is used, 

defined as Equation 11. 

ℎ𝑝𝑜𝑜𝑙𝑒𝑑 = max
𝑖=1,…,𝑘

ℎ𝑖   (11) 

The flattened output from the final pooling layer is 

passed through fully connected layers and a softmax 

output layer, like the MLP.  

LSTM networks are a type of recurrent neural network 

(RNN) designed to model sequential dependencies in 

data. Unlike standard RNNs, LSTMs can effectively 

learn long-term dependencies by using memory cells 

and gates. For a sequence of inputs ({𝑥𝑡}𝑡=1
𝑇 ), the LSTM 

computes the hidden state (ℎ𝑡) and cell state (𝑐𝑡) at each 

time step ( 𝑡 ). The updates are defined as Equation 12 

to Equation 16. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (12) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

(13) 

(14) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡

⊙ tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1

+ 𝑏𝑐) 

(15) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (16) 

Where (𝑖𝑡), (𝑓𝑡), and (𝑜𝑡) are the input, forget, and 

output gates, respectively, (𝑐𝑡) is the cell state, ( σ) is 

the sigmoid activation function, and ( ⊙) represents 

element-wise multiplication. The final hidden state (ℎ𝑇) 

is passed through fully connected layers and a softmax 

output layer.  

The GRU is a simplified variant of the LSTM that 

combines the input and forget gates into an update gate. 

The updates for GRUs are defined as Equation 17, 18 

and 19. 

𝑧𝑡 = σ(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (17) 

𝑟𝑡 = σ(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (18) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡

⊙ tanh(𝑊ℎ𝑥𝑡

+ 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) 

(19) 

BiLSTMs extend LSTMs by processing the input 

sequence in both forward and backward directions. The 

final hidden state is obtained by concatenating the 

hidden states from both directions, represented as 

Equation 20. 

ℎ𝑡
𝐵𝑖𝐿𝑆𝑇𝑀 = ℎ𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
, ℎ𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  (20) 
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By employing these architectures, this study explores 

their ability to capture diverse patterns in the data, 

ranging from simple non-linear relationships to complex 

temporal dependencies. 

2.7. Evaluation Metrics 

The evaluation of machine learning models is a critical 

aspect of this study, as it provides quantitative insights 

into their performance in classifying obesity levels 

based on the dataset. To ensure a comprehensive 

assessment, this study utilizes several widely accepted 

metrics, including accuracy, precision, recall, and F1-

score. These metrics collectively evaluate the models' 

ability to correctly classify samples, balance between 

positive and negative predictions, and handle 

imbalanced datasets effectively. This subsection 

provides a detailed explanation of each metric, including 

its mathematical formulation, interpretation, and 

relevance to the problem at hand. 

The accuracy metric is one of the most intuitive 

measures of model performance. It represents the 

proportion of correctly classified samples out of the total 

samples. Mathematically, accuracy is defined as 

Equation 21. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

(21) 

where TP, TN, FP, and FN represent true positives, true 

negatives, false positives, and false negatives, 

respectively. True positives are samples that belong to a 

particular class and are correctly predicted as such, 

while true negatives are samples that do not belong to 

the class and are correctly predicted as such. False 

positives and false negatives, on the other hand, 

represent misclassified samples. Although accuracy is 

straightforward and useful, it can be misleading when 

the dataset is imbalanced. In such cases, the model may 

achieve high accuracy by simply predicting the majority 

class, while ignoring the minority classes. To address 

the limitations of accuracy in imbalanced datasets, 

precision is used to measure the proportion of true 

positive predictions out of all samples predicted as 

positive. Precision is particularly important when the 

cost of false positives is high. For a specific class \( k \), 

precision is defined as Equation 22. 

Precision𝑘 =
TP𝑘

TP𝑘 + FP𝑘

 
(22) 

where (TP𝑘) and (FP𝑘) are the true positives and false 

positives for class ( 𝑘 ), respectively. High precision 

indicates that the model has a low false positive rate, 

making it reliable in identifying the positive class 

without including incorrect predictions. The recall, also 

known as sensitivity or true positive rate, measures the 

proportion of actual positive samples that are correctly 

identified by the model. Recall is particularly crucial 

when the cost of false negatives is high, as in medical 

diagnoses where missing a positive case can have severe 

consequences. For a specific class ( 𝑘 ), recall is defined 

as Equation 23. 

Recall𝑘 =
TP𝑘

TP𝑘 + FN𝑘

 
(23) 

where (TP𝑘) and (FN𝑘) are the true positives and false 

negatives for class ( 𝑘 ), respectively. High recall 

indicates that the model is effective in capturing most of 

the actual positive samples, even if it includes some false 

positives. To achieve a balance between precision and 

recall, the F1-score is used as a harmonic mean of the 

two metrics. The F1-score for a specific class ( 𝑘 ) is 

defined as Equation 24. 

F1-Score𝑘 = 2 ⋅
Precision𝑘 ⋅ Recall𝑘

Precision𝑘 + Recall𝑘

 
(24) 

The F1-score ranges between 0 and 1, with higher values 

indicating better performance. It is particularly useful in 

imbalanced datasets, as it considers both false positives 

and false negatives in a single metric. For multi-class 

classification problems, as in this study, these metrics 

are extended by averaging across all classes. Two 

common averaging strategies are macro-averaging and 

weighted-averaging. Macro-averaging calculates the 

metric for each class independently and then takes the 

unweighted mean as defined in Equation 25. 

Macro Average =
1

𝐾
∑ Metric𝑘

𝐾

𝑘=1

 

 

(25) 

where ( 𝐾 ) is the total number of classes. This approach 

treats all classes equally, regardless of their size. 

Weighted-averaging, on the other hand, accounts for 

class imbalance by weighting each class's metric by its 

proportion of samples in the dataset as defined in 

Equation 26. 

Weighted Average =
∑ 𝑁𝑘

𝐾
𝑘=1 ⋅ Metric𝑘

∑ 𝑁𝑘
𝐾
𝑘=1

 

 

(26) 

Where (𝑁𝑘) is the number of samples in class ( 𝑘 ). The 

weighted average provides a more realistic evaluation 

for imbalanced datasets, as it reflects the performance 

across all classes while considering their distribution. To 

ensure robust evaluation, the study employs stratified 

( 𝑘 )-fold cross-validation with ( 𝑘 =  10 ). This 

technique divides the dataset into ( 𝑘 ) equally sized 

folds while preserving the class distribution in each fold. 

During cross-validation, the model is trained on ( 𝑘 −
1 ) folds and tested on the remaining fold, rotating the 

test fold in each iteration. Let (𝒟) represent the dataset 

and (𝒟𝒾) denote the test fold in the ( 𝑖 )-th iteration. The 
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average metric across all folds is calculated as Equation 

27. 

MetricCV =
1

𝑘
∑ Metric(𝒟𝒾)

𝑘

𝑖=1

 

 

(27) 

This process reduces the risk of overfitting and ensures 

that the evaluation metrics generalize well to unseen 

data. 

3. Results and Discussion 

The results of the experiments conducted on the dataset 

using five deep learning models: MLP, CNN, LSTM, 

GRU, and BiLSTM are presented in terms of accuracy, 

precision, recall, and F1-score as presented in the Table 

1. These metrics provide a holistic evaluation of each 

model's performance under a stratified 10-fold cross-

validation setting. This section delves into the 

quantitative outcomes, followed by a detailed discussion 

of the comparative performance of the models. 

Table 1. Deep Learning Performance 

Model Accuracy Precision Recall F1-Score 

MLP 0.9905 0.9907 0.9905 0.9905 

CNN 0.9877 0.9879 0.9877 0.9877 
LSTM 0.8380 0.8407 0.8380 0.8374 

GRU 0.8659 0.8686 0.8659 0.8653 

BiLSTM 0.8678 0.8705 0.8678 0.8673 

3.1. Quantitative Results 

The MLP model achieved the highest performance 

across all metrics, with an accuracy of ( 0.9905 ), 

precision of ( 0.9907 ), recall of ( 0.9905 ), and F1-

score of ( 0.9905 ). These results indicate that the MLP 

model is capable of learning non-linear relationships in 

the dataset effectively and generalizes well across all 

obesity classes. The CNN model, while slightly less 

accurate than the MLP, also performed exceptionally 

well with an accuracy of ( 0.9877 ), precision of 

( 0.9879 ), recall of ( 0.9877 ), and F1-score of  

( 0.9877 ). The hierarchical feature extraction 

capability of CNNs likely contributed to its high 

performance, although its results were marginally 

inferior to those of the MLP. 

On the other hand, the sequential models LSTM, GRU, 

and BiLSTM demonstrated comparatively lower 

performance. The LSTM model achieved an accuracy of 

( 0.8380 ), precision of ( 0.8407 ), recall of ( 0.8380 ), 

and F1-score of ( 0.8374 ). GRU performed slightly 

better than LSTM, with an accuracy of ( 0.8659 ), 

precision of ( 0.8686 ), recall of ( 0.8659 ), and F1-

score of ( 0.8653 ). The BiLSTM model achieved the 

highest performance among the sequential models, with 

an accuracy of ( 0.8678 ), precision of ( 0.8705 ), 

recall of ( 0.8678 ), and F1-score of ( 0.8673 ). 

 

 

3.2. Discussion 

The results highlight a clear distinction in performance 

between the fully connected and convolutional models 

on the one hand, and the sequential models on the other. 

The superior performance of MLP and CNN can be 

attributed to the inherent structure of the dataset, which 

likely contains more static and non-temporal features. 

This characteristic makes it less suitable for models 

designed to capture temporal dependencies, such as 

LSTM, GRU, and BiLSTM. The MLP model’s 

performance demonstrates its effectiveness in handling 

structured datasets where features are independent and 

non-sequential. The fully connected architecture of the 

MLP allows it to learn complex non-linear mappings 

between the input features and the target labels. The 

addition of dropout regularization further enhances its 

ability to generalize by reducing overfitting. This 

explains its slight edge over CNN, which relies on 

convolutional filters to capture local patterns. While 

CNNs excel in processing spatial or sequential data, 

their performance in this study indicates that the dataset 

does not benefit significantly from such hierarchical 

feature extraction. 

The CNN model's strong performance can be attributed 

to its ability to process the dataset as a sequence of 

features after reshaping. By applying convolutional 

filters, the CNN model captures local feature patterns, 

which likely play a secondary role in distinguishing 

between obesity levels. However, the lack of a 

significant spatial structure in the dataset may explain 

why CNN underperformed slightly compared to MLP. 

The sequential models, including LSTM, GRU, and 

BiLSTM, demonstrated lower performance compared to 

MLP and CNN. This is likely because the dataset lacks 

a strong temporal or sequential structure, which these 

models are specifically designed to exploit. The 

relatively modest performance of LSTM can be 

attributed to its reliance on capturing long-term 

dependencies in sequences, which may not be relevant 

in this context. GRU, being a simplified variant of 

LSTM, performed slightly better due to its reduced 

computational complexity, which allows for faster 

convergence and fewer overfitting issues. 

BiLSTM marginally outperformed both LSTM and 

GRU, suggesting that processing the input data in both 

forward and backward directions contribute to improved 

learning. However, the overall performance of BiLSTM 

still falls short compared to MLP and CNN, reinforcing 

the notion that the dataset’s characteristics are better 

suited for models that do not rely on sequential 

dependencies. Another notable factor influencing the 

performance of sequential models is the inherent class 

imbalance in the dataset. While techniques such as 

SMOTE were applied to mitigate this issue, sequential 

models may still struggle with accurately learning 

minority class patterns due to their reliance on 

maintaining dependencies over a sequence. This 
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limitation becomes more apparent when evaluating 

metrics such as recall, where capturing minority class 

instances is critical.  

The differences in performance metrics among the 

models highlight their varying capabilities in capturing 

distinct data patterns. For instance, the F1-score, which 

balances precision and recall, is consistently lower for 

sequential models compared to MLP and CNN. This 

suggests that the sequential models are less effective in 

simultaneously minimizing both false positives and 

false negatives. On the other hand, the precision and 

recall metrics for MLP and CNN are nearly identical, 

indicating their balanced capability to correctly identify 

positive instances without overpredicting. 

3.3. Implications and Recommendations 

The findings of this study have implications for the 

selection of machine learning models for structured 

datasets, particularly in the context of obesity 

classification. The superior performance of MLP and 

CNN suggests that simpler, non-sequential architectures 

may suffice for datasets lacking temporal dependencies. 

These models are computationally efficient and require 

less hyperparameter tuning compared to sequential 

models, making them ideal for practical applications. 

However, sequential models should not be dismissed 

entirely. In scenarios where datasets exhibit temporal or 

sequential patterns, models such as LSTM, GRU, and 

BiLSTM may outperform MLP and CNN. Future 

research could explore incorporating temporal features 

or designing hybrid architecture that combines the 

strengths of sequential and non-sequential models to 

achieve improved performance. Moreover, the results 

underscore the importance of evaluating multiple 

metrics to gain a comprehensive understanding of model 

performance. While accuracy provides a general 

overview, precision, recall, and F1-score offer deeper 

insight into the models' ability to handle imbalanced 

datasets and capture patterns across all classes. 

4. Conclusion 

This study evaluates five deep learning architectures: 

MLP, CNN, LSTM, GRU, and BiLSTM for obesity 

classification using a structured dataset. A stratified 10-

fold cross-validation framework assesses accuracy, 

precision, recall, and F1-score. MLP outperforms all 

models with the highest accuracy (0.9905), precision 

(0.9907), recall (0.9905), and F1-score (0.9905), 

excelling in capturing complex non-linear relationships 

in independent, non-sequential features. CNN follows 

closely, benefiting from convolutional filters despite the 

dataset’s limited spatial structure. Conversely, 

sequential models perform worse, with LSTM (0.8380), 

GRU (0.8659), and BiLSTM (0.8678) showing lower 

accuracy due to the absence of temporal dependencies. 

Though BiLSTM marginally surpasses LSTM and 

GRU, its performance remains inferior to MLP and 

CNN. Class imbalance posed challenges, with SMOTE 

improving results, but sequential models struggled to 

capture minority class patterns, reflected in their lower 

recall and F1-scores. This study underscores that MLP 

and CNN are optimal for structured datasets with static 

features, offering superior performance with lower 

computational demands. While sequential models are 

less effective here, they may still be valuable for datasets 

with temporal dependencies. Future research could 

explore hybrid models that integrate sequential and non-

sequential architectures. 
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