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Abstract  

Obesity is a global health challenge with significant implications for public health systems and individual well-being. Predictive 

modeling using machine learning (ML) offers a powerful approach to identify individuals at risk of obesity and inform early 

intervention strategies. This study evaluates the performance of ten ML models, including Logistic Regression, Support Vector 

Machines, Decision Trees, K-Nearest Neighbors, Naive Bayes, Random Forest, Gradient Boosting, AdaBoost, XGBoost, and 

LightGBM, in predicting obesity using a publicly available dataset. A rigorous preprocessing pipeline, incorporating missing 

value handling, categorical encoding, normalization, and outlier detection, was applied to ensure data quality and compatibility 

with ML algorithms. Performance metrics such as accuracy, precision, recall, and F1-score were evaluated using 10-fold 

stratified cross-validation. Among the models, LightGBM demonstrated the highest test accuracy (99.19%) and F1-score 

(99.20%), outperforming Gradient Boosting and Random Forest, which also showed competitive results. The study highlights 

the superior predictive capabilities of ensemble methods while underscoring the trade-offs between model complexity and 

interpretability. Logistic Regression provided a strong baseline, demonstrating the importance of preprocessing, but was 

outperformed by advanced ensemble techniques. This research contributes to the growing field of ML-driven healthcare 

solutions, offering valuable insights into the strengths and limitations of various predictive models. The findings support the 

integration of advanced ML techniques in public health systems and pave the way for future research on hybrid and explainable 

models for obesity prediction and management.  
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1. Introduction 

Obesity is recognized as a global health crisis with 

significant socioeconomic and clinical implications [1], 

[2], [3]. The rapid increase in obesity rates has spurred 

extensive research into its underlying causes, prevention 

strategies, and prediction mechanisms [4]. Predictive 

modeling in healthcare, particularly for conditions like 

obesity, has gained traction in recent years due to 

advancements in machine learning (ML) techniques [5]. 

These models have demonstrated the potential to 

transform obesity management by identifying at-risk 

individuals and informing timely interventions, thus 

contributing to reducing the overall disease burden [6], 

[7], [8]. 

The availability of datasets containing comprehensive 

information on behavioral, physical, and dietary habits 

has paved the way for data-driven insights into obesity 

prediction [9]. However, the complexity of obesity-

related data, often characterized by missing values, 

mixed data types, and high dimensionality, presents 

challenges in developing robust and accurate predictive 

models [10], [11], [12]. Traditional statistical 

approaches, while insightful, often fall short of 

capturing the nuanced patterns and relationships 

inherent in such datasets [13]. This underscores the need 

for advanced ML models capable of handling these 

challenges and delivering reliable predictions [14].  The 

state of the art in obesity prediction has seen significant 

contributions from ensemble and hybrid ML techniques 

[15]. Studies have highlighted the efficacy of models 

such as Random Forest (RF), Gradient Boosting 

Machines (GBM), and Support Vector Machines (SVM) 

in achieving high predictive accuracy [16]. 

Additionally, boosting techniques, including XGBoost 

and LightGBM, have further pushed the boundaries of 

model performance by leveraging iterative 

improvements and feature importance mechanisms [17]. 

Despite these advancements, there remains a gap in 

systematically comparing a wide range of advanced ML 

models using standardized evaluation metrics, 

particularly in the context of obesity prediction [18]. 

Such comparisons are crucial for understanding the 

relative strengths and limitations of different algorithms, 

thereby enabling researchers and practitioners to make 

informed decisions [11], [19]. 

This study addresses the gap by conducting an extensive 

evaluation of ten ML models, including Logistic 

Regression, Decision Tree, K-Nearest Neighbors, Naive 

Bayes, RF, GBM, AdaBoost, SVM, XGBoost, and 

LightGBM, using a publicly available obesity dataset. 

The dataset captures a diverse array of features relevant 

to obesity prediction, including demographic, 

behavioral, and physiological variables. To ensure the 

reliability of the experimental results, a rigorous 

preprocessing pipeline was implemented. This included 
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handling missing values, encoding categorical variables, 

and normalizing numerical features. The target variable, 

representing obesity classes, was encoded as an integer 

for compatibility with ML algorithms. 

The experimental methodology incorporated a ten-fold 

stratified cross-validation approach to mitigate 

overfitting and ensure robust performance evaluation. 

Advanced scoring metrics, including accuracy, 

precision, recall, and F1 scores, were employed to 

provide a comprehensive assessment of model 

performance. The results of the study offer valuable 

insights into the comparative efficacy of different ML 

models, highlighting the trade-offs between model 

complexity, computational efficiency, and predictive 

accuracy. By systematically comparing the performance 

of state-of-the-art algorithms, this study lays the 

groundwork for future investigations into model 

optimization and real-world deployment in clinical and 

public health settings. The remainder of this article is 

structured as follows: The next section provides a 

Research Method section, it outlines the dataset, 

preprocessing steps, and experimental framework 

employed in this study. The Results section presents a 

comprehensive analysis of model performance, while 

the Discussion contextualizes these findings in relation 

to existing literature. Finally, the Conclusion highlights 

the key contributions of this work and proposes 

directions for future research. 

2. Research Method 

The study utilized a publicly available dataset on obesity 

prediction that included diverse attributes capturing 

demographic, behavioral, and physiological variables. 

The dataset comprised N samples and M features, with 

the target variable, Obesity, representing the 

classification labels for various obesity classes, the 

dataset can be downloaded from certain source [20]. The 

dataset included a mix of categorical and numerical 

features, requiring preprocessing steps to ensure its 

compatibility with machine learning algorithms. The 

preprocessing of the dataset was conducted 

systematically to address challenges such as missing 

values, class imbalance, and varying scales of numerical 

features. Missing values were addressed by adopting a 

complete case analysis approach, where instances with 

missing values were removed. This approach was 

chosen due to the small proportion of missing data (< 

5%), ensuring minimal loss of information while 

maintaining the integrity of the dataset. Outliers were 

detected using the interquartile range (IQR) method, 

where values lying beyond Q1 - 1.5 x IQR or Q3 + 1.5 

x IQR were considered outliers and excluded from the 

analysis. 

Categorical features in the dataset were transformed into 

numerical representations using label encoding. For a 

categorical feature 𝑥𝑖, the transformation was defined as 

𝑥𝑖̂ = {0,1, … , 𝐶 − 1}, where 𝐶 denotes the number of 

unique categories. This method preserved ordinal 

relationships, if present, while facilitating the 

application of machine learning algorithms. Numerical 

features 𝑥𝑗 were standardized using z-score 

normalization, defined as 𝑧𝑗 =
𝑥𝑗−μ𝑗

σ𝑗
, where μ𝑗 and σ𝑗 

represent the mean and standard deviation of feature 𝑗, 

respectively. This normalization ensured that all 

numerical features had a mean of zero and a standard 

deviation of one, thereby mitigating the influence of 

features with larger magnitudes on the model's 

performance. The target variable, Obesity, was encoded 

as an integer variable 𝑦 ∈ {0, 1, … , 𝑘 − 1}, where 𝑘 

represents the number of obesity classes. This encoding 

facilitated multi-class classification tasks and ensured 

compatibility with the machine learning models 

employed in the study. 

The experimental framework involved splitting the 

dataset into training and testing subsets, where the 

training set comprised 80% of the data (𝑋train, 𝑦train) and 

the testing set comprised 20% (𝑋test, 𝑦test). The models 

were evaluated using a stratified 10-fold cross-

validation approach. For each fold, the training data was 

further partitioned into 90% for training and 10% for 

validation, ensuring that the class distribution remained 

consistent across folds. The cross-validation process 

aimed to minimize overfitting and provide robust 

estimates of model performance. The machine learning 

algorithms evaluated in this study included Logistic 

Regression, Random Forest, Support Vector Machine, 

Decision Tree, K-Nearest Neighbors, Naive Bayes, 

Gradient Boosting Machine, AdaBoost, XGBoost, and 

LightGBM. Each algorithm was trained to minimize a 

loss function ℒ, specific to its architecture. For instance, 

Logistic Regression minimized the cross-entropy loss, 

defined as Equation 1. 

ℒlgsi = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘

𝐾
𝑘=1 log(𝑦𝑖,𝑘̂)𝑁

𝑖=1   (1) 

Where 𝑦𝑖,𝑘 is the true label and 𝑦𝑖,𝑘̂ is the predicted 

probability for class 𝑘. Tree-based methods such as 

Random Forest and Gradient Boosting minimized 

impurity measures like Gini index or entropy at each 

node, defined as Equation 2. 

ℒgn = ∑ 𝑝𝑘(1 − 𝑝𝑘)𝐾
𝑘=1    (2) 

Where 𝑝𝑘 is the proportion of samples belonging to class 

𝑘 at a given node. Evaluation metrics included accuracy, 

precision, recall, and F1-score, calculated as follows. 

Accuracy, denoted as Equation 3 represents the 

proportion of correctly classified samples. 

Accuracy =
TP+TN

TP+TN+FP+FN
   (3) 

Precision, defined as Equation 4, measures the 

proportion of positive predictions that are correct. 

Precision =
TP

TP+FP
   (4) 
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Recall, expressed as Equation 5, quantifies the model's 

ability to identify true positives. 

Recall =
TP

TP+FN
    (5) 

The F1-score, which balances precision and recall, is 

defined as Equation 6. 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
  (6) 

To ensure a fair comparison across models, 

hyperparameters were tuned for each algorithm using 

grid search with cross-validation, optimizing the 

respective evaluation metric. For ensemble models such 

as Random Forest, the number of trees 𝑛 and the 

maximum tree depth 𝑑 were tuned to balance model 

complexity and performance. For boosting algorithms, 

learning rates η and the number of boosting rounds 𝑇 

were optimized to achieve convergence without 

overfitting. The results of the experiments were 

aggregated across folds to compute mean and standard 

deviation for each metric, providing a comprehensive 

view of each model's performance. The testing set was 

used to validate the best-performing models, ensuring 

that the results were generalizable to unseen data. This 

robust framework ensured that the study addressed 

critical challenges in obesity prediction, including 

handling imbalanced data, optimizing feature 

representation, and evaluating model performance 

comprehensively. By employing advanced machine 

learning techniques and rigorous evaluation metrics, this 

study contributes to the development of reliable 

predictive models for obesity classification. 

3.  Result and Discussion 

As presented in Table 1, the results of this study present 

a detailed comparative evaluation of various machine 

learning models for obesity prediction. The models were 

assessed using multiple performance metrics, including 

training and testing accuracy, precision, recall, and F1-

score, to provide a comprehensive understanding of 

their strengths and weaknesses. This section discusses 

the performance of each model, highlights key trends, 

and elaborates on their implications for obesity 

prediction. 

Table  1. Software dan Hardware Supporting Table 

Model Train Accuracy Test Accuracy Precision Recall F1 Score 

LightGBM 1.000000 0.991943 0.992098 0.991943 0.991952 

Gradient Boosting 1.000000 0.984362 0.984813 0.984362 0.984332 
Logistic Regression 0.981525 0.976319 0.977266 0.976319 0.976350 

Random Forest 0.999474 0.970151 0.971050 0.970151 0.970184 

Decision Tree 0.995842 0.959262 0.960194 0.959262 0.959284 
SVM 0.977683 0.937946 0.940440 0.937946 0.938069 

AdaBoost 0.906416 0.891051 0.911806 0.891051 0.894537 

KNN 0.915996 0.887257 0.887326 0.887257 0.886268 
Naive Bayes 0.713301 0.711495 0.710872 0.711495 0.675717 

3.1. Model Performance Analysis 

The LightGBM model achieved the highest overall 

performance, with a perfect training accuracy of 1.000 

and a testing accuracy of 0.992. Its precision, recall, and 

F1-score were all 0.992, demonstrating both high 

sensitivity and specificity. These results highlight the 

robustness of LightGBM in generalizing unseen data 

while maintaining a strong ability to capture complex 

patterns in the dataset. The Gradient Boosting model 

followed closely with a testing accuracy of 0.984 and 

comparable precision (0.985), recall (0.984), and F1-

score (0.984). Both boosting models exhibit exceptional 

capabilities in handling imbalanced datasets and 

leveraging iterative learning to optimize performance. 

Logistic Regression performed surprisingly well for a 

linear model, achieving a testing accuracy of 0.976 

alongside high precision (0.977), recall (0.976), and F1-

score (0.976). This competitive performance suggests a 

degree of linear separability within the dataset, though 

the model's inability to capture non-linear relationships 

limited its ability to outperform advanced ensemble 

methods. Random Forest achieved a testing accuracy of 

0.970 with precision, recall, and F1-score values close 

to 0.970, confirming its effectiveness in handling high-

dimensional data. However, its reliance on ensemble 

averaging resulted in slightly lower performance 

compared to boosting algorithms. 

Decision Tree, with a testing accuracy of 0.959 and F1-

score of 0.959, demonstrated reasonable predictive 

capabilities but suffered from overfitting due to its 

reliance on a single tree structure. Support Vector 

Machine (SVM) achieved a testing accuracy of 0.938, 

with precision (0.940), recall (0.938), and F1-score 

(0.938). While SVM's kernel-based approach is 

effective in handling non-linear decision boundaries, its 

performance lagged ensemble methods, likely due to 

challenges in hyperparameter optimization. 

AdaBoost displayed moderate performance, with a 

testing accuracy of 0.891, precision of 0.912, recall of 

0.891, and F1-score of 0.895. Despite its ability to focus 

on misclassified samples, AdaBoost's iterative approach 

was less effective in this dataset, potentially due to noise 

or feature redundancy. K-Nearest Neighbors (KNN) 

achieved a testing accuracy of 0.887 and F1-score of 

0.886, reflecting its sensitivity to noisy data and high-

dimensional feature spaces. Naive Bayes recorded the 

lowest performance, with a testing accuracy of 0.711 

and F1-score of 0.676, primarily due to its strong 
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independence assumption, which does not hold for 

interdependent features in the dataset. 

3.2. Training and Generalization Performance 

The training accuracy of LightGBM, Gradient Boosting, 

and Random Forest models approached 1.000, 

indicating their ability to learn intricate patterns in the 

training data. The high testing accuracy of these models 

suggests that overfitting was effectively mitigated 

through their regularization mechanisms. In contrast, 

Decision Tree exhibited a larger gap between training 

and testing accuracy, highlighting its susceptibility to 

overfitting without ensemble averaging. Logistic 

Regression's strong performance demonstrates its 

suitability for datasets with linearly separable features, 

though its simplicity limits its applicability to more 

complex patterns. The performance gap between SVM 

and ensemble models suggests that hyperparameter 

tuning and kernel selection play critical roles in 

maximizing SVM's potential for this dataset. 

3.3. Evaluation Metrics Analysis 

The use of multiple evaluation metrics provided a 

nuanced understanding of the models' performance. 

Precision and recall were particularly relevant for 

obesity prediction, as they emphasize the models' ability 

to correctly classify minority classes. For instance, 

LightGBM's precision of 0.992 indicates its 

effectiveness in minimizing false positives, while its 

recall of 0.992 demonstrates its capacity to identify true 

positives across all obesity classes. F1-score, as the 

harmonic mean of precision and recall, offered a 

balanced measure of model performance. The 

consistently high F1-scores of LightGBM (0.992), 

Gradient Boosting (0.984), and Logistic Regression 

(0.976) validate their reliability and robustness in 

handling multi-class obesity classification. These 

metrics are particularly valuable for applications where 

class imbalance can skew accuracy-based evaluations. 

3.4. Implications for Obesity Prediction 

The superior performance of boosting algorithms, 

particularly LightGBM and Gradient Boosting, 

underscores their suitability for complex, high-

dimensional datasets. Their ability to iteratively refine 

predictions and optimize feature importance makes 

them ideal for addressing the challenges of obesity 

prediction. Logistic Regression's competitive 

performance highlights its potential as a baseline model 

for initial analysis, especially in scenarios where 

interpretability is a priority. The underperformance of 

Naive Bayes and KNN reflects the importance of 

selecting models that align with the dataset's 

characteristics. Naive Bayes' independence assumption 

and KNN's sensitivity to noise and dimensionality 

limited their effectiveness. These findings emphasize 

the need for careful model selection and the importance 

of leveraging ensemble methods for robust predictions. 

4.  Conclusion 

This study examined machine learning techniques for 

obesity prediction using a public dataset, comparing ten 

models, including traditional and advanced ensemble 

methods. LightGBM and Gradient Boosting 

outperformed others, with LightGBM excelling in 

handling complex data and imbalances. Effective 

preprocessing, including handling missing values, 

encoding, and normalization, was crucial for model 

performance. While simpler models like Logistic 

Regression offer interpretability, ensemble methods 

better capture data complexities. The findings highlight 

machine learning's potential in healthcare, particularly 

for personalized interventions and public health 

monitoring. However, the dataset's limited diversity 

suggests future research should include broader 

populations. Additionally, improving ensemble model 

interpretability through SHAP or LIME could enhance 

clinical applicability. 
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