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Abstract

Obesity is a global health challenge with significant implications for public health systems and individual well-being. Predictive
modeling using machine learning (ML) offers a powerful approach to identify individuals at risk of obesity and inform early
intervention strategies. This study evaluates the performance of ten ML models, including Logistic Regression, Support Vector
Machines, Decision Trees, K-Nearest Neighbors, Naive Bayes, Random Forest, Gradient Boosting, AdaBoost, XGBoost, and
LightGBM, in predicting obesity using a publicly available dataset. A rigorous preprocessing pipeline, incorporating missing
value handling, categorical encoding, normalization, and outlier detection, was applied to ensure data quality and compatibility
with ML algorithms. Performance metrics such as accuracy, precision, recall, and F1-score were evaluated using 10-fold
stratified cross-validation. Among the models, LightGBM demonstrated the highest test accuracy (99.19%) and Fl-score
(99.20%), outperforming Gradient Boosting and Random Forest, which also showed competitive results. The study highlights
the superior predictive capabilities of ensemble methods while underscoring the trade-offs between model complexity and
interpretability. Logistic Regression provided a strong baseline, demonstrating the importance of preprocessing, but was
outperformed by advanced ensemble techniques. This research contributes to the growing field of ML-driven healthcare
solutions, offering valuable insights into the strengths and limitations of various predictive models. The findings support the
integration of advanced ML techniques in public health systems and pave the way for future research on hybrid and explainable
models for obesity prediction and management.
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[ |
state of the art in obesity prediction has seen significant
contributions from ensemble and hybrid ML techniques
Obesity is recognized as a global health crisis with [15]. Studies have highlighted the efficacy of models
significant socioeconomic and clinical implications [1], such as Random Forest (RF), Gradient Boosting
[2], [3]. The rapid increase in obesity rates has spurred Machines (GBM), and Support Vector Machines (SVM)
extensive research into its underlying causes, prevention in  achieving high predictive accuracy [16].
strategies, and prediction mechanisms [4]. Predictive Additionally, boosting techniques, including XGBoost
modeling in healthcare, particularly for conditions like and LightGBM, have further pushed the boundaries of
obesity, has gained traction in recent years due to model performance by leveraging iterative
advancements in machine learning (ML) techniques [5]. improvements and feature importance mechanisms [17].
These models have demonstrated the potential to Despite these advancements, there remains a gap in
transform obesity management by identifying at-risk systematically comparing a wide range of advanced ML
individuals and informing timely interventions, thus models using standardized evaluation metrics,
contributing to reducing the overall disease burden [6], particularly in the context of obesity prediction [18].
[71. [8]. Such comparisons are crucial for understanding the
relative strengths and limitations of different algorithms,
thereby enabling researchers and practitioners to make
informed decisions [11], [19].

1. Introduction

The availability of datasets containing comprehensive
information on behavioral, physical, and dietary habits
has paved the way for data-driven insights into obesity
prediction [9]. However, the complexity of obesity- This study addresses the gap by conducting an extensive
related data, often characterized by missing values, evaluation of ten ML models, including Logistic
mixed data types, and high dimensionality, presents Regression, Decision Tree, K-Nearest Neighbors, Naive
challenges in developing robust and accurate predictive Bayes, RF, GBM, AdaBoost, SVM, XGBoost, and
models [10], [11], [12]. Traditional statistical LightGBM, using a publicly available obesity dataset.
approaches, while insightful, often fall short of The dataset captures a diverse array of features relevant
capturing the nuanced patterns and relationships to obesity prediction, including demographic,
inherent in such datasets [13]. This underscores the need behavioral, and physiological variables. To ensure the
for advanced ML models capable of handling these reliability of the experimental results, a rigorous
challenges and delivering reliable predictions [14]. The preprocessing pipeline was implemented. This included
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handling missing values, encoding categorical variables,
and normalizing numerical features. The target variable,
representing obesity classes, was encoded as an integer
for compatibility with ML algorithms.

The experimental methodology incorporated a ten-fold
stratified cross-validation approach to mitigate
overfitting and ensure robust performance evaluation.
Advanced scoring metrics, including accuracy,
precision, recall, and F1 scores, were employed to
provide a comprehensive assessment of model
performance. The results of the study offer valuable
insights into the comparative efficacy of different ML
models, highlighting the trade-offs between model
complexity, computational efficiency, and predictive
accuracy. By systematically comparing the performance
of state-of-the-art algorithms, this study lays the
groundwork for future investigations into model
optimization and real-world deployment in clinical and
public health settings. The remainder of this article is
structured as follows: The next section provides a
Research Method section, it outlines the dataset,
preprocessing steps, and experimental framework
employed in this study. The Results section presents a
comprehensive analysis of model performance, while
the Discussion contextualizes these findings in relation
to existing literature. Finally, the Conclusion highlights
the key contributions of this work and proposes
directions for future research.

2. Research Method

The study utilized a publicly available dataset on obesity
prediction that included diverse attributes capturing
demographic, behavioral, and physiological variables.
The dataset comprised N samples and M features, with
the target wvariable, Obesity, representing the
classification labels for various obesity classes, the
dataset can be downloaded from certain source [20]. The
dataset included a mix of categorical and numerical
features, requiring preprocessing steps to ensure its
compatibility with machine learning algorithms. The
preprocessing of the dataset was conducted
systematically to address challenges such as missing
values, class imbalance, and varying scales of numerical
features. Missing values were addressed by adopting a
complete case analysis approach, where instances with
missing values were removed. This approach was
chosen due to the small proportion of missing data (<
5%), ensuring minimal loss of information while
maintaining the integrity of the dataset. Outliers were
detected using the interquartile range (IQR) method,
where values lying beyond Q1 - 1.5 x IQR or Q3 + 1.5
X IQR were considered outliers and excluded from the
analysis.

Categorical features in the dataset were transformed into
numerical representations using label encoding. For a
categorical feature x;, the transformation was defined as
x, ={0,1,...,C — 1}, where C denotes the number of
unique categories. This method preserved ordinal

relationships, if present, while facilitating the
application of machine learning algorithms. Numerical
features x; were standardized using z-score

J
. . . Xi—Wj
normalization, defined as z; = ’G % where w; and o;
j

represent the mean and standard deviation of feature j,
respectively. This normalization ensured that all
numerical features had a mean of zero and a standard
deviation of one, thereby mitigating the influence of
features with larger magnitudes on the model's
performance. The target variable, Obesity, was encoded
as an integer variable y €{0,1, ...,k — 1}, where k
represents the number of obesity classes. This encoding
facilitated multi-class classification tasks and ensured
compatibility with the machine learning models
employed in the study.

The experimental framework involved splitting the
dataset into training and testing subsets, where the
training set comprised 80% of the data (X ain, Verain) @Nd
the testing set comprised 20% (Xest, Viest)- The models
were evaluated using a stratified 10-fold cross-
validation approach. For each fold, the training data was
further partitioned into 90% for training and 10% for
validation, ensuring that the class distribution remained
consistent across folds. The cross-validation process
aimed to minimize overfitting and provide robust
estimates of model performance. The machine learning
algorithms evaluated in this study included Logistic
Regression, Random Forest, Support Vector Machine,
Decision Tree, K-Nearest Neighbors, Naive Bayes,
Gradient Boosting Machine, AdaBoost, XGBoost, and
LightGBM. Each algorithm was trained to minimize a
loss function £, specific to its architecture. For instance,
Logistic Regression minimized the cross-entropy loss,
defined as Equation 1.

ngsi = (1)
Where y;, is the true label and y,; is the predicted
probability for class k. Tree-based methods such as
Random Forest and Gradient Boosting minimized
impurity measures like Gini index or entropy at each
node, defined as Equation 2.

Lgn = le§:1 pk(l - pk) (2)

Where p, is the proportion of samples belonging to class
k at a given node. Evaluation metrics included accuracy,
precision, recall, and F1-score, calculated as follows.
Accuracy, denoted as Equation 3 represents the
proportion of correctly classified samples.

1 —~
T 1 Xk Vik log(yl,k)

TP+TN

Accuracy = TP+TN+FP+FN (3)
Precision, defined as Equation 4, measures the
proportion of positive predictions that are correct.

Precision = —— 4)

TP+FP
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Recall, expressed as Equation 5, quantifies the model's
ability to identify true positives.

TP
TP+FN

Recall = )
The F1-score, which balances precision and recall, is
defined as Equation 6.

Precision-Recall

F1-Score = 2 - (6)

To ensure a fair comparison across models,
hyperparameters were tuned for each algorithm using
grid search with cross-validation, optimizing the
respective evaluation metric. For ensemble models such
as Random Forest, the number of trees n and the
maximum tree depth d were tuned to balance model
complexity and performance. For boosting algorithms,
learning rates n and the number of boosting rounds T
were optimized to achieve convergence without
overfitting. The results of the experiments were
aggregated across folds to compute mean and standard
deviation for each metric, providing a comprehensive
view of each model's performance. The testing set was

Precision+Recall

used to validate the best-performing models, ensuring
that the results were generalizable to unseen data. This
robust framework ensured that the study addressed
critical challenges in obesity prediction, including
handling imbalanced data, optimizing feature
representation, and evaluating model performance
comprehensively. By employing advanced machine
learning techniques and rigorous evaluation metrics, this
study contributes to the development of reliable
predictive models for obesity classification.

3. Result and Discussion

As presented in Table 1, the results of this study present
a detailed comparative evaluation of various machine
learning models for obesity prediction. The models were
assessed using multiple performance metrics, including
training and testing accuracy, precision, recall, and F1-
score, to provide a comprehensive understanding of
their strengths and weaknesses. This section discusses
the performance of each model, highlights key trends,
and elaborates on their implications for obesity
prediction.

Table 1. Software dan Hardware Supporting Table

Model Train Accuracy  Test Accuracy  Precision Recall F1 Score
LightGBM 1.000000 0.991943 0.992098  0.991943  0.991952
Gradient Boosting 1.000000 0.984362 0.984813  0.984362  0.984332
Logistic Regression 0.981525 0.976319 0.977266  0.976319  0.976350
Random Forest 0.999474 0.970151 0.971050 0.970151 0.970184
Decision Tree 0.995842 0.959262 0.960194  0.959262  0.959284
SVM 0.977683 0.937946 0.940440  0.937946  0.938069
AdaBoost 0.906416 0.891051 0.911806 0.891051  0.894537
KNN 0.915996 0.887257 0.887326  0.887257  0.886268
Naive Bayes 0.713301 0.711495 0.710872  0.711495  0.675717

3.1. Model Performance Analysis

The LightGBM model achieved the highest overall
performance, with a perfect training accuracy of 1.000
and a testing accuracy of 0.992. Its precision, recall, and
F1-score were all 0.992, demonstrating both high
sensitivity and specificity. These results highlight the
robustness of LightGBM in generalizing unseen data
while maintaining a strong ability to capture complex
patterns in the dataset. The Gradient Boosting model
followed closely with a testing accuracy of 0.984 and
comparable precision (0.985), recall (0.984), and F1-
score (0.984). Both boosting models exhibit exceptional
capabilities in handling imbalanced datasets and
leveraging iterative learning to optimize performance.

Logistic Regression performed surprisingly well for a
linear model, achieving a testing accuracy of 0.976
alongside high precision (0.977), recall (0.976), and F1-
score (0.976). This competitive performance suggests a
degree of linear separability within the dataset, though
the model's inability to capture non-linear relationships
limited its ability to outperform advanced ensemble
methods. Random Forest achieved a testing accuracy of
0.970 with precision, recall, and F1-score values close
to 0.970, confirming its effectiveness in handling high-

dimensional data. However, its reliance on ensemble
averaging resulted in slightly lower performance
compared to boosting algorithms.

Decision Tree, with a testing accuracy of 0.959 and F1-
score of 0.959, demonstrated reasonable predictive
capabilities but suffered from overfitting due to its
reliance on a single tree structure. Support Vector
Machine (SVM) achieved a testing accuracy of 0.938,
with precision (0.940), recall (0.938), and F1-score
(0.938). While SVM's kernel-based approach is
effective in handling non-linear decision boundaries, its
performance lagged ensemble methods, likely due to
challenges in hyperparameter optimization.

AdaBoost displayed moderate performance, with a
testing accuracy of 0.891, precision of 0.912, recall of
0.891, and F1-score of 0.895. Despite its ability to focus
on misclassified samples, AdaBoost's iterative approach
was less effective in this dataset, potentially due to noise
or feature redundancy. K-Nearest Neighbors (KNN)
achieved a testing accuracy of 0.887 and F1-score of
0.886, reflecting its sensitivity to noisy data and high-
dimensional feature spaces. Naive Bayes recorded the
lowest performance, with a testing accuracy of 0.711
and Fl-score of 0.676, primarily due to its strong
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independence assumption, which does not hold for 4. Conclusion

interdependent features in the dataset.
3.2. Training and Generalization Performance

The training accuracy of LightGBM, Gradient Boosting,
and Random Forest models approached 1.000,
indicating their ability to learn intricate patterns in the
training data. The high testing accuracy of these models
suggests that overfitting was effectively mitigated
through their regularization mechanisms. In contrast,
Decision Tree exhibited a larger gap between training
and testing accuracy, highlighting its susceptibility to
overfitting without ensemble averaging. Logistic
Regression's strong performance demonstrates its
suitability for datasets with linearly separable features,
though its simplicity limits its applicability to more
complex patterns. The performance gap between SVM
and ensemble models suggests that hyperparameter
tuning and kernel selection play critical roles in
maximizing SVM's potential for this dataset.

3.3. Evaluation Metrics Analysis

The use of multiple evaluation metrics provided a
nuanced understanding of the models' performance.
Precision and recall were particularly relevant for
obesity prediction, as they emphasize the models' ability
to correctly classify minority classes. For instance,
LightGBM's precision of 0.992 indicates its
effectiveness in minimizing false positives, while its
recall of 0.992 demonstrates its capacity to identify true
positives across all obesity classes. Fl-score, as the
harmonic mean of precision and recall, offered a
balanced measure of model performance. The
consistently high Fl-scores of LightGBM (0.992),
Gradient Boosting (0.984), and Logistic Regression
(0.976) validate their reliability and robustness in
handling multi-class obesity classification. These
metrics are particularly valuable for applications where
class imbalance can skew accuracy-based evaluations.

3.4. Implications for Obesity Prediction

The superior performance of boosting algorithms,
particularly LightGBM and Gradient Boosting,
underscores their suitability for complex, high-
dimensional datasets. Their ability to iteratively refine
predictions and optimize feature importance makes
them ideal for addressing the challenges of obesity
prediction.  Logistic ~ Regression's  competitive
performance highlights its potential as a baseline model
for initial analysis, especially in scenarios where
interpretability is a priority. The underperformance of
Naive Bayes and KNN reflects the importance of
selecting models that align with the dataset's
characteristics. Naive Bayes' independence assumption
and KNN's sensitivity to noise and dimensionality
limited their effectiveness. These findings emphasize
the need for careful model selection and the importance
of leveraging ensemble methods for robust predictions.

This study examined machine learning techniques for
obesity prediction using a public dataset, comparing ten
models, including traditional and advanced ensemble
methods.  LightGBM and Gradient Boosting
outperformed others, with LightGBM excelling in
handling complex data and imbalances. Effective
preprocessing, including handling missing values,
encoding, and normalization, was crucial for model
performance. While simpler models like Logistic
Regression offer interpretability, ensemble methods
better capture data complexities. The findings highlight
machine learning's potential in healthcare, particularly
for personalized interventions and public health
monitoring. However, the dataset's limited diversity
suggests future research should include broader
populations. Additionally, improving ensemble model
interpretability through SHAP or LIME could enhance
clinical applicability.
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