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Abstract  

Alzheimer’s Disease (AD) is a leading cause of disability among the elderly, with its prevalence projected to triple by 2050. 

Early detection remains critical for effective disease management, yet traditional diagnostic methods are often time-intensive 

and subjective. This study investigates the effectiveness of three machine learning architectures: Multi-Layer Perceptron 

(MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) in detecting Alzheimer’s Disease using 

a multidimensional dataset comprising demographic, lifestyle, medical, cognitive, and functional data from 2,149 patients. 

Each model was evaluated using 10-fold cross-validation, with performance metrics including accuracy, precision, recall, and 

F1-score. The CNN model demonstrated superior performance, achieving an average accuracy of 88.65%, surpassing both the 

MLP (84.41%) and LSTM (75.57%) models. These results highlight CNNs’ capability to effectively extract spatial patterns in 

health data, making them a promising tool for Alzheimer’s diagnosis. In contrast, LSTM underperformed due to the lack of 

temporal relationships in the dataset. This study underscores the importance of aligning model architecture with dataset 

characteristics and provides a foundation for integrating machine learning into clinical workflows. Future work will focus on 

hybrid architectures and real-world validation to enhance diagnostic accuracy and scalability. 
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1. Introduction 

Alzheimer’s Disease (AD) remains a significant global 

health challenge due to its progressive nature and the 

devastating impact it has on cognitive and functional 

abilities [1]. It is a major cause of disability among 

elderly individuals, with a growing prevalence as the 

global population ages [2]. According to recent studies, 

the number of individuals affected by AD is projected to 

triple by 2050, emphasizing the need for better 

diagnostic and preventive strategies [3]. Traditional 

methods of diagnosing Alzheimer’s Disease heavily rely 

on clinical observations and neuropsychological testing, 

which, while effective, are time-consuming, subjective, 

and often fail to detect early symptoms [4], [5], [6]. This 

underscores the need for innovative, data-driven 

approaches that leverage advances in machine learning 

to address these limitations [7]. By incorporating 

demographic, lifestyle, medical history, and cognitive 

data, machine learning models can offer a 

comprehensive analysis of risk factors and symptoms 

associated with AD, providing a robust framework for 

early detection [8]. 

Despite significant advancements in medical 

diagnostics, existing literature reveals critical gaps in the 

application of machine learning models for Alzheimer's 

detection. For instance, many prior studies have focused 

solely on individual predictors, such as genetic 

predisposition or cognitive tests, without integrating 

multiple dimensions of patient data. A study 

demonstrated the potential of logistic regression models 

using demographic and medical history data for AD 

diagnosis but reported moderate accuracy due to the lack 

of cognitive and functional assessment variables [9]. 

Similarly, other study applied neural networks to 

imaging data, achieving high precision but at the cost of 

computational resources, making the approach 

impractical for routine screenings [10]. Furthermore, 

certain research highlighted the need for addressing 

imbalanced datasets, as Alzheimer’s cases are often 

underrepresented in broader health data, leading to 

skewed predictions [11]. These gaps reveal an 

opportunity to explore hybrid and ensemble models that 

can efficiently integrate diverse data types to improve 

diagnostic performance. 

The state of the art in Alzheimer’s research increasingly 

points towards deep learning models, which have shown 

promise in extracting complex patterns from 

multidimensional data. Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) 

models, for instance, have been successfully utilized in 

other domains of medical diagnostics, such as cancer 

detection and diabetes prediction [12], [13], [14]. 

However, their application in Alzheimer's detection has 

been limited by challenges such as overfitting, lack of 

interpretability, and insufficient validation on diverse 

datasets [15], [16], [17]. Moreover, while multi-layer 

perceptrons (MLPs) have been explored for classifying 

cognitive impairment, their performance often suffers 

due to the heterogeneity of Alzheimer’s data [18]. The 

present research addresses these challenges by 

proposing a comprehensive evaluation of MLPs, CNNs, 
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and LSTMs, combined with robust cross-validation 

techniques to ensure generalizability and reliability [19]. 

The urgency of advancing diagnostic tools for 

Alzheimer’s Disease cannot be overstated. As the 

disease progresses, the cost of care escalates 

significantly, imposing a substantial economic burden 

on families and healthcare systems [20]. Early detection, 

enabled by predictive models, has the potential to 

mitigate these costs by facilitating timely interventions 

and better management of the disease [21]. Additionally, 

integrating machine learning into clinical workflows 

aligns with global initiatives to digitize healthcare and 

improve access to personalized medicine [22]. The 

ability to analyze complex interactions among 

demographic, lifestyle, medical, and cognitive factors is 

critical for identifying at-risk individuals and tailoring 

preventive measures accordingly [23], [24]. 

The primary goal of our research is to develop and 

evaluate machine learning models that leverage the rich 

diversity of data available in the Alzheimer’s Disease 

Dataset to enhance diagnostic accuracy. Our approach 

integrates MLP, CNN, and LSTM architectures, each 

suited to different aspects of the dataset’s 

multidimensional nature. By employing ten-fold cross-

validation, we aim to ensure robust model evaluation 

and address the common issue of overfitting in 

Alzheimer’s research. Our contribution lies in not only 

identifying the best-performing model but also 

providing insights into the interpretability and practical 

applicability of these models in real-world scenarios. 

This study sets itself apart by utilizing an extensive 

dataset that includes demographic, medical, cognitive, 

and functional assessments, making the findings highly 

relevant to clinical practice. 

The remainder of this article is structured as follows. 

First, we present the materials and methods, detailing 

the dataset preparation, preprocessing techniques, and 

the architecture of the machine learning models used. 

Next, the results section provides a comparative analysis 

of the model performances, followed by an in-depth 

discussion of the implications, limitations, and potential 

future directions. Finally, we conclude by summarizing 

our key findings and emphasizing the significance of 

integrating machine learning into Alzheimer’s 

diagnostics. Through this research, we aim to contribute 

to the growing body of knowledge in digital health, 

providing a scalable and efficient framework for 

addressing one of the most pressing challenges in 

modern healthcare. 

2. Research Method 

This section details the research methodology, 

elaborating on the dataset preparation, preprocessing 

techniques, and the architecture of the machine learning 

models. The dataset used in this study is the Alzheimer’s 

Disease Dataset and can be downloaded from certain 

source, which contains detailed records of 2,149 

patients, each identified by a unique Patient ID ranging 

from 4751 to 6900 [25]. Each record includes 

demographic, lifestyle, medical history, clinical, 

cognitive, and functional assessments, along with the 

diagnosis of Alzheimer’s Disease. Formally, let the 

dataset be represented as (𝐷 = {(𝑋𝑖 , 𝑦𝑖)}𝑖=1
𝑛 ), where 

(𝑋𝑖 ∈ 𝑅𝑑) is the feature vector for the (𝑖)-th patient, 

(𝑦𝑖 ∈ {0,1}) is the binary diagnosis label indicating the 

absence or presence of Alzheimer’s Disease, and (𝑛 =
 2149) is the total number of samples.  

The dataset preprocessing involves three main steps: 

removal of non-predictive features, normalization of the 

input features, and encoding of the target variable. First, 

features that do not contribute to the predictive task, 

such as PatientID and DoctorInCharge, were excluded, 

reducing the feature dimension to (𝑑 =  28). The 

cleaned dataset is thus represented as (𝐷cleaned =
{(𝑋𝑖

′, 𝑦𝑖)}𝑖=1
𝑛 ), where (𝑋𝑖

′ ∈ 𝑅𝟚𝟠). 

The second step involves normalization to standardize 

the feature values. Let (𝑋𝑖𝑗
′ ) represent the (𝑗)-th feature 

of the (𝑖)-th sample. Each feature (𝑗) is transformed as 

presented in Equation 1. 

𝑋𝑖𝑗
′′ =

𝑋𝑖𝑗
′ − 𝜇𝑗

𝜎𝑗

 
(1) 

where (μ𝑗 =
1

𝑛
∑ 𝑋𝑖𝑗

′𝑛
𝑖=1 ) is the mean of feature (𝑗), and 

(σ𝑗 = √
1

𝑛
∑ (𝑋𝑖𝑗

′ − μ𝑗)
2𝑛

𝑖=1 ) is the standard deviation. 

This transformation ensures that all features have a 

mean of 0 and a standard deviation of 1, facilitating 

efficient optimization during model training.  The target 

variable (𝑦 ∈ {0, 1}) is encoded using one-hot 

encoding, resulting in (𝑌 ∈ 𝑅𝑛×𝟚), where each row 

(𝑌𝑖 = [𝑦𝑖0 , 𝑦𝑖1]) satisfies (𝑦𝑖0 + 𝑦𝑖1 = 1), with (𝑦𝑖0) 

indicating absence ((𝑦𝑖 = 0))𝑎𝑛𝑑(𝑦𝑖1) indicating 

presence ((𝑦𝑖 = 1)) of Alzheimer’s Disease. 

To ensure reliable model evaluation, the dataset was 

partitioned using (𝑘)-fold cross-validation with (𝑘 =
 10). In each fold (𝑘 ∈ {1, … , 10}), the dataset is split 

into training ((𝑋train
𝑘 , 𝑌train

𝑘 )) and testing ((𝑋test
𝑘 , 𝑌test

𝑘 )) 

subsets, maintaining the class distribution. Let (𝑛𝑘
train) 

and (𝑛𝑘
test) denote the sizes of the training and testing 

subsets, respectively, such that (𝑛𝑘
train + 𝑛𝑘

test = 𝑛). 

Three machine learning architectures were employed: 

Multi-Layer Perceptron (MLP), Convolutional Neural 

Network (CNN), and Long Short-Term Memory 

(LSTM) network. Each architecture is tailored to 

different aspects of the dataset’s multidimensional 

structure. The MLP architecture consists of three fully 

connected layers. The layer has (𝑑 =  28) neurons 

corresponding to the feature dimension. The first hidden 

layer has (ℎ1 = 128) neurons with ReLU activation, 

defined as (𝑓(𝑥) = max(0, 𝑥)). Dropout regularization 

with a rate (𝑟 =  0.3) is applied to reduce overfitting. 
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The second hidden layer contains (ℎ2 = 64) neurons, 

also with ReLU activation and dropout. The output layer 

has two neurons, corresponding to the two classes, and 

uses the softmax activation function as presented in 

Equation 2. 

𝜎(𝑧𝑖) =
exp(𝑧𝑖)

∑2
𝑗=1 exp(𝑧𝑗)

 
(2) 

where (𝑧𝑖) is the (𝑖)-th output logit. The CNN model 

begins with reshaping the input feature matrix (𝑋 ∈
𝑅𝑛×𝑑) to (𝑋′ ∈ 𝑅𝑛×𝑑×𝟙). The first convolutional layer 

applies (𝑓 =  64) filters of size (𝑘 =  3), followed by 

a second convolutional layer with (𝑓 =  32) filters of 

size (𝑘 =  3). Mathematically, the convolution 

operation is given by 𝑧𝑖,𝑗 = ∑ 𝑤𝑝𝑥𝑖,𝑗+𝑝
𝑘−1
𝑝=0 + 𝑏, where 

(𝑧𝑖,𝑗) is the output of the (𝑗)-th convolution for the (𝑖)-

th sample, (𝑤𝑝) are the kernel weights, and (𝑏) is the 

bias term. The outputs are flattened into a vector of size 

(𝑣) and passed through a dense layer with 64 neurons 

before the softmax output layer. 

The LSTM model captures sequential dependencies in 

the input features. The input is reshaped as (𝑋′ ∈
𝑅𝑛×𝑑×𝟙). The first LSTM layer has (𝑢 =  128) units 

and processes input sequentially, updating the hidden 

state (ℎ𝑡) and cell state (𝑐𝑡) at each time step (𝑡) as 

presented in Equation 3 and 4. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),  𝑖𝑡

= 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

(3) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),  𝑐𝑡

= 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡

⊙ tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1

+ 𝑏𝑐) 

(4) 

where (𝑓𝑡), (𝑖𝑡), and (𝑜𝑡) are the forget, input, and 

output gates, respectively, and (⊙) denotes element-

wise multiplication. A second LSTM layer with (𝑢 =
 64) units refines the representations. Dropout 

regularization with (𝑟 =  0.3) is applied after each 

LSTM layer, and the final output is passed through a 

dense layer with softmax activation. The performance of 

each model is evaluated using metrics such as accuracy, 

precision, recall, and F1-score. Let (𝑇𝑃), (𝐹𝑃), (𝑇𝑁), 

and (𝐹𝑁) denote the true positives, false positives, true 

negatives, and false negatives, respectively. The metrics 

are defined as presented in Equation 5, 6 ,7 and 8. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(5) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 

(8) 

This methodology ensures comprehensive evaluation 

and highlights the effectiveness of advanced machine 

learning architectures in detecting Alzheimer’s Disease. 

3.  Result and Discussion 

The results of this study demonstrate the effectiveness 

of different machine learning architectures: Multi-Layer 

Perceptron (MLP), Convolutional Neural Network 

(CNN), and Long Short-Term Memory (LSTM) in 

detecting Alzheimer’s Disease as presented in the table 

1. Each model was evaluated using four key 

performance metrics: accuracy, precision, recall, and 

F1-score. The metrics provide a comprehensive 

understanding of each model’s predictive capability and 

generalization performance. 

Table 1. Deep Learning’s Performance Results 

Model Accuracy Precision Recall F1 Score 

MLP 0.8441 0.8430 0.8441 0.8417 
CNN 0.8865 0.8884 0.8865 0.8862 

LSTM 0.7557 0.7567 0.7557 0.7528 

The MLP model achieved an average accuracy of 

84.41%, a precision of 84.30%, a recall of 84.41%, and 

an F1-score of 84.17%. These results indicate that the 

MLP model performs consistently across all metrics, 

showing balanced precision and recall. This suggests 

that the MLP model effectively captures the linear and 

nonlinear relationships within the features, leveraging 

its fully connected architecture. However, while the 

MLP achieves reasonable performance, its metrics lag 

behind those of the CNN model, highlighting the 

limitations of simple dense architectures when handling 

complex, multidimensional data. 

The CNN model outperformed the MLP in all metrics, 

achieving an average accuracy of 88.65%, precision of 

88.84%, recall of 88.65%, and F1-score of 88.62%. The 

CNN’s superior performance can be attributed to its 

ability to capture spatial patterns within the data through 

convolutional layers. By applying filters, the CNN 

extracts high-level feature representations that are likely 

more informative for the classification task. 

Additionally, the combination of convolutional layers 

and dense layers enables the CNN to generalize well 

across folds, as evidenced by its consistently high recall 

and F1-score. This makes the CNN model the most 

robust and accurate among the three architectures 

evaluated in this study. 

In contrast, the LSTM model achieved an average 

accuracy of 75.57%, precision of 75.67%, recall of 

75.57%, and F1-score of 75.28%. While LSTMs are 

particularly effective for sequential and temporal data, 
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their performance in this study indicates limitations 

when applied to tabular, non-sequential datasets like the 

Alzheimer’s Disease Dataset. The relatively lower 

performance metrics suggest that the LSTM model 

struggled to extract meaningful dependencies or 

patterns, likely due to the absence of inherent temporal 

relationships in the data. Furthermore, the higher 

computational complexity of LSTMs compared to 

CNNs and MLPs may have contributed to less optimal 

performance during the cross-validation process. The 

comparison of these models highlights important 

insights into their suitability for Alzheimer’s Disease 

detection. The CNN model’s ability to outperform both 

MLP and LSTM architectures underscores the 

importance of leveraging spatial feature extraction 

techniques in high-dimensional datasets. In contrast, the 

lower performance of the LSTM emphasizes that model 

selection should align with the nature of the data; while 

LSTMs excel in time-series or sequential tasks, they 

may not be well-suited for tasks involving tabular data 

without temporal dimensions. These findings also 

emphasize the critical role of architecture design in 

optimizing predictive performance. For instance, the use 

of convolutional layers in the CNN allowed it to exploit 

feature hierarchies, while the dense layers in the MLP 

captured generalized patterns. On the other hand, the 

LSTM’s reliance on sequential processing appeared less 

effective given the structure of the input data. This 

suggests that future studies could explore hybrid models 

that combine CNNs with other architectures, such as 

MLPs, to further enhance predictive capabilities. 

4.  Conclusion 

This study investigates the effectiveness of three 

machine learning architectures: Multi-Layer Perceptron 

(MLP), Convolutional Neural Network (CNN), and 

Long Short-Term Memory (LSTM) for detecting 

Alzheimer’s Disease using a comprehensive dataset that 

integrates demographic, lifestyle, medical, and 

cognitive features. Employing 10-fold cross-validation, 

the evaluation revealed that the CNN model 

outperformed the others, achieving the highest metrics 

(accuracy: 88.65%, F1-score: 88.62%), underscoring its 

robustness in capturing complex spatial patterns. The 

MLP showed reasonable performance (accuracy: 

84.41%, F1-score: 84.17%), while the LSTM, more 

suited for temporal data, struggled with the dataset’s 

tabular nature, achieving lower metrics (accuracy: 

75.57%, F1-score: 75.28%). These findings emphasize 

the importance of aligning model architecture with 

dataset characteristics, with CNNs proving particularly 

effective for complex feature interactions. The study 

contributes to data-driven healthcare by demonstrating 

the potential of machine learning models as diagnostic 

tools, with future directions including hybrid models, 

interpretability techniques, and validation on larger 

datasets to enhance clinical applicability and improve 

early detection and management of Alzheimer’s 

Disease. 
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