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Abstract

Alzheimer’s Disease (AD) is a leading cause of disability among the elderly, with its prevalence projected to triple by 2050.
Early detection remains critical for effective disease management, yet traditional diagnostic methods are often time-intensive
and subjective. This study investigates the effectiveness of three machine learning architectures: Multi-Layer Perceptron
(MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) in detecting Alzheimer’s Disease using
a multidimensional dataset comprising demographic, lifestyle, medical, cognitive, and functional data from 2,149 patients.
Each model was evaluated using 10-fold cross-validation, with performance metrics including accuracy, precision, recall, and
F1-score. The CNN model demonstrated superior performance, achieving an average accuracy of 88.65%, surpassing both the
MLP (84.41%) and LSTM (75.57%) models. These results highlight CNNs’ capability to effectively extract spatial patterns in
health data, making them a promising tool for Alzheimer’s diagnosis. In contrast, LSTM underperformed due to the lack of
temporal relationships in the dataset. This study underscores the importance of aligning model architecture with dataset
characteristics and provides a foundation for integrating machine learning into clinical workflows. Future work will focus on

hybrid architectures and real-world validation to enhance diagnostic accuracy and scalability.
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1. Introduction

Alzheimer’s Disease (AD) remains a significant global
health challenge due to its progressive nature and the
devastating impact it has on cognitive and functional
abilities [1]. It is a major cause of disability among
elderly individuals, with a growing prevalence as the
global population ages [2]. According to recent studies,
the number of individuals affected by AD is projected to
triple by 2050, emphasizing the need for better
diagnostic and preventive strategies [3]. Traditional
methods of diagnosing Alzheimer’s Disease heavily rely
on clinical observations and neuropsychological testing,
which, while effective, are time-consuming, subjective,
and often fail to detect early symptoms [4], [5], [6]. This
underscores the need for innovative, data-driven
approaches that leverage advances in machine learning
to address these limitations [7]. By incorporating
demographic, lifestyle, medical history, and cognitive
data, machine learning models can offer a
comprehensive analysis of risk factors and symptoms
associated with AD, providing a robust framework for
early detection [8].

Despite  significant advancements in  medical
diagnostics, existing literature reveals critical gaps in the
application of machine learning models for Alzheimer's
detection. For instance, many prior studies have focused
solely on individual predictors, such as genetic
predisposition or cognitive tests, without integrating
multiple dimensions of patient data. A study
demonstrated the potential of logistic regression models

using demographic and medical history data for AD
diagnosis but reported moderate accuracy due to the lack
of cognitive and functional assessment variables [9].
Similarly, other study applied neural networks to
imaging data, achieving high precision but at the cost of
computational resources, making the approach
impractical for routine screenings [10]. Furthermore,
certain research highlighted the need for addressing
imbalanced datasets, as Alzheimer’s cases are often
underrepresented in broader health data, leading to
skewed predictions [11]. These gaps reveal an
opportunity to explore hybrid and ensemble models that
can efficiently integrate diverse data types to improve
diagnostic performance.

The state of the art in Alzheimer’s research increasingly
points towards deep learning models, which have shown
promise in extracting complex patterns from
multidimensional data. Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)
models, for instance, have been successfully utilized in
other domains of medical diagnostics, such as cancer
detection and diabetes prediction [12], [13], [14].
However, their application in Alzheimer's detection has
been limited by challenges such as overfitting, lack of
interpretability, and insufficient validation on diverse
datasets [15], [16], [17]. Moreover, while multi-layer
perceptrons (MLPs) have been explored for classifying
cognitive impairment, their performance often suffers
due to the heterogeneity of Alzheimer’s data [18]. The
present research addresses these challenges by
proposing a comprehensive evaluation of MLPs, CNNs,
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and LSTMs, combined with robust cross-validation
techniques to ensure generalizability and reliability [19].

The urgency of advancing diagnostic tools for
Alzheimer’s Disease cannot be overstated. As the
disease progresses, the cost of care escalates
significantly, imposing a substantial economic burden
on families and healthcare systems [20]. Early detection,
enabled by predictive models, has the potential to
mitigate these costs by facilitating timely interventions
and better management of the disease [21]. Additionally,
integrating machine learning into clinical workflows
aligns with global initiatives to digitize healthcare and
improve access to personalized medicine [22]. The
ability to analyze complex interactions among
demographic, lifestyle, medical, and cognitive factors is
critical for identifying at-risk individuals and tailoring
preventive measures accordingly [23], [24].

The primary goal of our research is to develop and
evaluate machine learning models that leverage the rich
diversity of data available in the Alzheimer’s Disease
Dataset to enhance diagnostic accuracy. Our approach
integrates MLP, CNN, and LSTM architectures, each
suited to different aspects of the dataset’s
multidimensional nature. By employing ten-fold cross-
validation, we aim to ensure robust model evaluation
and address the common issue of overfitting in
Alzheimer’s research. Our contribution lies in not only
identifying the best-performing model but also
providing insights into the interpretability and practical
applicability of these models in real-world scenarios.
This study sets itself apart by utilizing an extensive
dataset that includes demographic, medical, cognitive,
and functional assessments, making the findings highly
relevant to clinical practice.

The remainder of this article is structured as follows.
First, we present the materials and methods, detailing
the dataset preparation, preprocessing techniques, and
the architecture of the machine learning models used.
Next, the results section provides a comparative analysis
of the model performances, followed by an in-depth
discussion of the implications, limitations, and potential
future directions. Finally, we conclude by summarizing
our key findings and emphasizing the significance of
integrating machine learning into Alzheimer’s
diagnostics. Through this research, we aim to contribute
to the growing body of knowledge in digital health,
providing a scalable and efficient framework for
addressing one of the most pressing challenges in
modern healthcare.

2. Research Method

This section details the research methodology,
elaborating on the dataset preparation, preprocessing
techniques, and the architecture of the machine learning
models. The dataset used in this study is the Alzheimer’s
Disease Dataset and can be downloaded from certain
source, which contains detailed records of 2,149

patients, each identified by a unique Patient 1D ranging
from 4751 to 6900 [25]. Each record includes
demographic, lifestyle, medical history, clinical,
cognitive, and functional assessments, along with the
diagnosis of Alzheimer’s Disease. Formally, let the
dataset be represented as (D = {(X;,v;)}=,), where
(X; € RY) is the feature vector for the (i)-th patient,
(y; € {0,1}) is the binary diagnosis label indicating the
absence or presence of Alzheimer’s Disease, and (n =
2149) is the total number of samples.

The dataset preprocessing involves three main steps:
removal of non-predictive features, normalization of the
input features, and encoding of the target variable. First,
features that do not contribute to the predictive task,
such as PatientID and DoctorInCharge, were excluded,
reducing the feature dimension to (d = 28). The
cleaned dataset is thus represented as (Dgeaned =
(X}, y)¥L1), where (X; € R?),

The second step involves normalization to standardize
the feature values. Let (X;;) represent the (j)-th feature
of the (i)-th sample. Each feature (j) is transformed as

presented in Equation 1.
v Xij b @

Xij -

9j
1
where (y; = -

1 !
(Gj = \/;Z?ﬂ(xij
This transformation ensures that all features have a
mean of 0 and a standard deviation of 1, facilitating
efficient optimization during model training. The target
variable (y €{0,1}) is encoded using one-hot
encoding, resulting in (Y € R™?), where each row
(Y; = [yio, yuu]) satisfies (yio + v = 1), with ()
indicating absence ((y; = 0))and(y;;) indicating
presence ((y; = 1)) of Alzheimer’s Disease.

i1 X{;) is the mean of feature (j), and

— ;)" is the standard deviation,

To ensure reliable model evaluation, the dataset was
partitioned using (k)-fold cross-validation with (k =
10). In each fold (k € {1, ...,10}), the dataset is split
into training (X Yiain)) and testing ((fése Yio)
subsets, maintaining the class distribution. Let (n{®™)
and (nisY) denote the sizes of the training and testing
subsets, respectively, such that (n{fa™ + niest = n).
Three machine learning architectures were employed:
Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN), and Long Short-Term Memory
(LSTM) network. Each architecture is tailored to
different aspects of the dataset’s multidimensional
structure. The MLP architecture consists of three fully
connected layers. The layer has (d = 28) neurons
corresponding to the feature dimension. The first hidden
layer has (h; = 128) neurons with ReLU activation,
defined as (f (x) = max(0, x)). Dropout regularization
with a rate (r = 0.3) is applied to reduce overfitting.

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 810-814

811



Gregorius Airlangga

The second hidden layer contains (h, = 64) neurons,
also with ReL U activation and dropout. The output layer
has two neurons, corresponding to the two classes, and
uses the softmax activation function as presented in
Equation 2.

exp(z;) )

) TS ()

j=1

where (z;) is the (i)-th output logit. The CNN model
begins with reshaping the input feature matrix (X €
R™%) to (X' € R™4<1), The first convolutional layer
applies (f = 64) filters of size (k = 3), followed by
a second convolutional layer with (f = 32) filters of
size (k = 3). Mathematically, the convolution
operation is given by z; ; = Z’;;é WpX; j+p + b, Where
(z;j) is the output of the (j)-th convolution for the (i)-
th sample, (w,) are the kernel weights, and (b) is the
bias term. The outputs are flattened into a vector of size
(v) and passed through a dense layer with 64 neurons
before the softmax output layer.

The LSTM model captures sequential dependencies in
the input features. The input is reshaped as (X' €
R™4x1) The first LSTM layer has (u = 128) units
and processes input sequentially, updating the hidden
state (h.) and cell state (c,) at each time step (t) as
presented in Equation 3 and 4.

ft = O-(Vfot + Ufht—l + bf), it’ (3)
= o(Wx; + Uihe—y + by)

o, = o(Woxe + Uyhe_y + b,), ¢
=ft O ceq + i
O tanh(W.x; + U hy_y
+b,)

(4)

where (f;), (i;), and (o;) are the forget, input, and
output gates, respectively, and (©) denotes element-
wise multiplication. A second LSTM layer with (u =
64) units refines the representations. Dropout
regularization with (r = 0.3) is applied after each
LSTM layer, and the final output is passed through a
dense layer with softmax activation. The performance of
each model is evaluated using metrics such as accuracy,
precision, recall, and F1-score. Let (TP), (FP), (TN),
and (FN) denote the true positives, false positives, true
negatives, and false negatives, respectively. The metrics
are defined as presented in Equation 5, 6 ,7 and 8.

A TP + TN (5)
Uy = Tp Y TN + FP + FN
i ©
Precision =
recision TP n Fp

TP @)
Recall = m

Precision - Recall (8)
F1-Score =2 -

Precision + Recall

This methodology ensures comprehensive evaluation
and highlights the effectiveness of advanced machine
learning architectures in detecting Alzheimer’s Disease.

3. Result and Discussion

The results of this study demonstrate the effectiveness
of different machine learning architectures: Multi-Layer
Perceptron (MLP), Convolutional Neural Network
(CNN), and Long Short-Term Memory (LSTM) in
detecting Alzheimer’s Disease as presented in the table
1. Each model was evaluated using four key
performance metrics: accuracy, precision, recall, and
Fl-score. The metrics provide a comprehensive
understanding of each model’s predictive capability and
generalization performance.

Table 1. Deep Learning’s Performance Results

Model Accuracy  Precision Recall F1 Score
MLP 0.8441 0.8430 0.8441 0.8417
CNN 0.8865 0.8884 0.8865 0.8862
LSTM 0.7557 0.7567 0.7557 0.7528

The MLP model achieved an average accuracy of
84.41%, a precision of 84.30%, a recall of 84.41%, and
an Fl-score of 84.17%. These results indicate that the
MLP model performs consistently across all metrics,
showing balanced precision and recall. This suggests
that the MLP model effectively captures the linear and
nonlinear relationships within the features, leveraging
its fully connected architecture. However, while the
MLP achieves reasonable performance, its metrics lag
behind those of the CNN model, highlighting the
limitations of simple dense architectures when handling
complex, multidimensional data.

The CNN model outperformed the MLP in all metrics,
achieving an average accuracy of 88.65%, precision of
88.84%, recall of 88.65%, and F1-score of 88.62%. The
CNN’s superior performance can be attributed to its
ability to capture spatial patterns within the data through
convolutional layers. By applying filters, the CNN
extracts high-level feature representations that are likely
more informative for the classification task.
Additionally, the combination of convolutional layers
and dense layers enables the CNN to generalize well
across folds, as evidenced by its consistently high recall
and Fl-score. This makes the CNN model the most
robust and accurate among the three architectures
evaluated in this study.

In contrast, the LSTM model achieved an average
accuracy of 75.57%, precision of 75.67%, recall of
75.57%, and F1-score of 75.28%. While LSTMs are
particularly effective for sequential and temporal data,
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their performance in this study indicates limitations
when applied to tabular, non-sequential datasets like the
Alzheimer’s Disease Dataset. The relatively lower
performance metrics suggest that the LSTM model
struggled to extract meaningful dependencies or
patterns, likely due to the absence of inherent temporal
relationships in the data. Furthermore, the higher
computational complexity of LSTMs compared to
CNNs and MLPs may have contributed to less optimal
performance during the cross-validation process. The
comparison of these models highlights important
insights into their suitability for Alzheimer’s Disease
detection. The CNN model’s ability to outperform both
MLP and LSTM architectures underscores the
importance of leveraging spatial feature extraction
techniques in high-dimensional datasets. In contrast, the
lower performance of the LSTM emphasizes that model
selection should align with the nature of the data; while
LSTMs excel in time-series or sequential tasks, they
may not be well-suited for tasks involving tabular data
without temporal dimensions. These findings also
emphasize the critical role of architecture design in
optimizing predictive performance. For instance, the use
of convolutional layers in the CNN allowed it to exploit
feature hierarchies, while the dense layers in the MLP
captured generalized patterns. On the other hand, the
LSTM’s reliance on sequential processing appeared less
effective given the structure of the input data. This
suggests that future studies could explore hybrid models
that combine CNNs with other architectures, such as
MLPs, to further enhance predictive capabilities.

4. Conclusion

This study investigates the effectiveness of three
machine learning architectures: Multi-Layer Perceptron
(MLP), Convolutional Neural Network (CNN), and
Long Short-Term Memory (LSTM) for detecting
Alzheimer’s Disease using a comprehensive dataset that
integrates  demographic, lifestyle, medical, and
cognitive features. Employing 10-fold cross-validation,
the evaluation revealed that the CNN model
outperformed the others, achieving the highest metrics
(accuracy: 88.65%, F1-score: 88.62%), underscoring its
robustness in capturing complex spatial patterns. The
MLP showed reasonable performance (accuracy:
84.41%, Fl-score: 84.17%), while the LSTM, more
suited for temporal data, struggled with the dataset’s
tabular nature, achieving lower metrics (accuracy:
75.57%, F1-score: 75.28%). These findings emphasize
the importance of aligning model architecture with
dataset characteristics, with CNNs proving particularly
effective for complex feature interactions. The study
contributes to data-driven healthcare by demonstrating
the potential of machine learning models as diagnostic
tools, with future directions including hybrid models,
interpretability techniques, and validation on larger
datasets to enhance clinical applicability and improve
early detection and management of Alzheimer’s
Disease.
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