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Abstract  

The impact of software development methodologies on quality metrics is a crucial area of study in empirical software 

engineering. This research evaluates the performance of three deep learning architectures: Multi-Layer Perceptron (MLP), 

Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM), in predicting key software quality indicators, 

including maintainability index, test coverage, and code complexity, for projects developed using Behavior-Driven 

Development (BDD) and Test-Driven Development (TDD) approaches. Using a static tabular dataset containing software 

quality metrics, the models are evaluated based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and the 𝑅2 coefficient. The MLP achieves the best performance, with the lowest RMSE 

(6.41) and MAE (6.34) and the highest 𝑅2 value (−4.21), demonstrating its suitability for tabular data. The CNN performs 

moderately, while the LSTM underperforms due to its reliance on temporal dependencies absent from the dataset. These results 

emphasize the need for careful architectural alignment with dataset characteristics. The findings contribute to understanding 

the predictive power of deep learning models in software quality analysis and highlight the potential of MLP as a robust tool 

for such predictions. Future work can explore hybrid models and domain-specific feature engineering to enhance prediction 

accuracy. 

Keywords: Deep Learning Architectures, Tabular Data, Predictive Modeling, Multi-Layer Perceptron (MLP), Comparative 

Analysis. 
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1. Introduction 

The ever-evolving landscape of software engineering 

demands methodologies that not only ensure efficient 

development cycles but also enhance software quality 

[1]. [2], [3]. In this pursuit, Behavior-Driven 

Development (BDD) and Test-Driven Development 

(TDD) have emerged as two of the most prominent 

methodologies in contemporary software engineering 

practices [4]. While both methods advocate a shift-left 

approach to software quality assurance, they 

fundamentally differ in their principles and processes. 

BDD emphasizes collaboration among stakeholders 

through executable specifications, whereas TDD focuses 

on rigorous unit testing driven by pre-written test cases 

[5]. These methodologies have garnered significant 

attention in the software engineering community, 

particularly for their potential to enhance 

maintainability, improve test coverage, and reduce code 

complexity [6]. However, their relative effectiveness 

and the contexts in which one may outperform the other 

remain areas of active research [7]. 

Existing studies have explored the impacts of BDD and 

TDD on various software quality metrics. For instance, 

a research conducted a comparative analysis of BDD and 

TDD practices in large-scale projects, finding that BDD 

led to better stakeholder communication but at the cost 

of increased initial development time [8]. Similarly, 

another research analyzed the maintainability and test 

coverage of software modules developed using TDD and 

concluded that TDD enhanced code reliability but often 

resulted in higher code complexity due to the extensive 

focus on unit tests [9]. Despite these insights, the 

methodologies’ effects on holistic quality indicators, 

such as maintainability indices, code complexity, and 

test coverage, remain underexplored, particularly in a 

controlled, data-driven context. Furthermore, the 

integration of advanced computational models for 

analysis in these contexts remains limited, leaving an 

opportunity to deepen understanding through modern 

techniques [10]. 

The urgency of this research lies in addressing the 

growing need for empirical evidence that supports 

practitioners in selecting the most suitable methodology 

for their specific development contexts [11]. As the 

software industry increasingly adopts agile practices, 

choosing between BDD and TDD has become critical, 

particularly for projects requiring rapid development and 

high-quality outcomes [4]. Current research often 

provides qualitative assessments or limited quantitative 

analyses, leaving significant gaps in understanding the 

methodologies' comprehensive impacts. This research 

aims to fill these gaps by leveraging deep learning 

models, such as Long Short-Term Memory networks 
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(LSTM), Convolutional Neural Networks (CNN), and 

Multi-Layer Perceptrons (MLP), to analyze and predict 

software quality metrics [12]. These models are 

particularly suited for capturing complex patterns and 

relationships within the dataset, enabling more nuanced 

insights into the methodologies' effectiveness [13]. 

The primary goal of this study is to investigate the 

relative effectiveness of BDD and TDD in influencing 

software quality metrics, including maintainability, test 

coverage, and code complexity [14]. By employing deep 

learning techniques, this study not only compares the 

methodologies but also demonstrates the potential of 

advanced computational models in software engineering 

research [15]. The contribution of this research lies in 

introducing predictive capabilities to comparative 

methodology studies, providing actionable insights into 

quality outcomes based on development practices. 

Furthermore, the use of LSTM, CNN, and MLP models 

ensures that both sequential patterns and static 

relationships in the data are effectively captured, leading 

to robust and reliable predictions [16]. 

The remaining structure of this article is as follows: The 

next section elaborates on the materials and methods 

used in this study, detailing the dataset characteristics, 

preprocessing steps, and the architectures of the deep 

learning models applied. Subsequently, the results and 

discussion section present a comparative analysis of the 

performance metrics across different models, 

highlighting key trends and implications for software 

development methodologies. Finally, the conclusion 

summarizes the findings, outlines directions for future 

research, and emphasizes the practical relevance of this 

study to the software engineering community. 

2. Research Method 

The methodology of this study is structured into three 

main components: dataset description, preprocessing 

steps, and the architecture of deep learning models 

employed. This section provides a comprehensive 

explanation of each component, ensuring a robust and 

reproducible framework. 

2.1. Dataset Description  

The dataset utilized in this study provides a 

comprehensive basis for comparing the Behavior-

Driven Development (BDD) and Test-Driven 

Development (TDD) methodologies and can be 

downloaded from [17]. Each observation in the dataset 

represents a software project or module and can be 

expressed mathematically as a tuple as presented in 

Equation 1.  

[𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑓},  for 𝑖 = 1,2, … , 𝑛] (1) 

where (𝑛) is the total number of observations, and (𝑓) 

denotes the number of features. These features include 

essential software quality metrics such as the 

development methodology ((𝑀𝑖)), maintainability 

index ((𝑥𝑖1)), test coverage ((𝑥𝑖2)), code complexity 

((𝑥𝑖3)), and development time ((𝑥𝑖4)). The dataset also 

contains the target variable (𝑄𝑖), which represents the 

overall software quality. The development methodology 

feature, (𝑀𝑖), is a categorical variable defined as 

follows. If the project follows the BDD methodology, 

(𝑀𝑖 = 1). If the project follows the TDD methodology, 

(𝑀𝑖 = 0). The maintainability index, (𝑥𝑖1), is a 

numerical score that quantifies the ease of maintaining 

the software. It is computed using Equation 2. 

𝑠𝑥𝑖1

= 171 − 5.2 ⋅ log2(Cyclomatic Complexity)
− 0.23 ⋅ Lines of Code − 16.2
⋅ log2(Halstead Volume) 

(2) 

where the cyclomatic complexity, lines of code, and 

Halstead volume are derived from the source code 

metrics of the project. A higher value of (𝑥𝑖1) indicates 

better maintainability. Test coverage, denoted as (𝑥𝑖2), 

is a percentage that represents the proportion of code 

covered by automated tests. It is calculated as presented 

in Equation 3. 

𝑥𝑖2 =
Lines of Code Tested

Total Lines of Code
× 100 

(3) 

Code complexity, represented as (𝑥𝑖3), is measured 

using cyclomatic complexity, which quantifies the 

number of independent paths through the program's 

control flow graph. It is defined as presented in Equation 

4. 

𝑥𝑖3 = 𝑒 − 𝑛 + 2𝑝 (4) 

where (𝑒) is the number of edges in the control flow 

graph, (𝑛) is the number of nodes in the graph, and (𝑝) 

is the number of connected components in the graph. 

Development time, (𝑥𝑖4), is a continuous variable that 

records the total time required to complete the project, 

measured in hours. This is computed based on 

timestamps associated with key milestones during the 

development lifecycle. The target variable, software 

quality ((𝑄𝑖)), is a composite metric that integrates 

maintainability index ((𝑥𝑖1)), test coverage ((𝑥𝑖2)), and 

code complexity ((𝑥𝑖3)) through a weighted linear 

combination as presented in Equation 5. 

𝑄𝑖 = α ⋅ 𝑥𝑖1 + β ⋅ 𝑥𝑖2 − γ ⋅ 𝑥𝑖3 (5) 

where (α), (β), and (γ) represent the weights assigned 

to maintainability, test coverage, and code complexity, 

respectively. These weights are determined based on the 

industry’s best practices and expert recommendations, 

ensuring that (𝑄𝑖) reflects an accurate and holistic 

measure of software quality. To summarize, the dataset 
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can be mathematically represented as presented in 

Equation 6.  

𝑋 ∈ 𝑅𝑛×𝑓 ,  𝑦 ∈ 𝑅𝑛 (6) 

where (𝑋) is the feature matrix containing (𝑛) 

observations and (𝑓) features, and (𝑦) is the vector of 

target quality scores for each project. The data set 

structure ensures compatibility with advanced deep 

learning models, facilitating a robust analysis of the 

impacts of BDD and TDD methodologies on software 

quality. 

2.2. Preprocessing 

This pipeline consists of several key stages: data 

cleaning, feature scaling, categorical encoding, data 

splitting, and sequence transformation.  

2.2.1. Data Cleaning 

The raw dataset often contains missing values and 

outliers, which can adversely affect the training of deep 

learning models. These issues are addressed through 

imputation and outlier detection techniques. Missing 

values in numerical features such as maintainability 

index ((𝑀)), test coverage ((𝐶)), code complexity 

((𝑋)), and development time ((𝑇)) are imputed using 

the median value of each feature. Mathematically, the 

imputed value for a feature (𝑥𝑖𝑗) in row (𝑖) is given in 

Equation 7. 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗  if 𝑥𝑖𝑗 ≠ NaN

median(𝑥𝑗) if 𝑥𝑖𝑗 = NaN.
 

(7) 

where (median(𝑥𝑗)) represents the median of feature 

(𝑥𝑗) across all non-missing observations. Outlier 

detection is performed using the Interquartile Range 

(IQR) method. The IQR is defined as IQR = 𝑄3 − 𝑄1, 

where (𝑄1) and (𝑄3) are the 25th and 75th percentiles 

of the feature (𝑥𝑗), respectively. Any value (𝑥𝑖𝑗) that 

satisfies: 𝑥𝑖𝑗 < 𝑄1 − 1.5 ⋅ IQR or 𝑥𝑖𝑗 > 𝑄3 + 1.5 ⋅

IQR is considered an outlier and is capped at the nearest 

5th or 95th percentile, respectively in Equation 8 and 

Equation 9. 

𝑥𝑖𝑗
′  if 𝑥𝑖𝑗 ≠ NaN (8) 

median(𝑥𝑗) if 𝑥𝑖𝑗 = NaN (9) 

Here, (𝑃5(𝑥𝑗)) and (𝑃95(𝑥𝑗)) denote the 5th and 95th 

percentiles of feature (𝑥𝑗), respectively. 

 

2.2.2.  Feature Scaling 

To standardize the range of numerical features, Min-

Max normalization is applied. Each feature (𝑥𝑖𝑗) is 

scaled to the range ([0,1]) using the formula: 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,  where 𝑥𝑚𝑖𝑛 and (𝑥𝑚𝑎𝑥) are the 

minimum and maximum values of the feature (𝑥𝑗), 

respectively, across all observations. The scaled feature 

(𝑥𝑖𝑗
′ ) ensures that all inputs to the model have uniform 

ranges, reducing the risk of dominance by features with 

larger magnitudes. 

2.2.3. Categorical Encoding 

The development methodology column, denoted as 

(𝑀𝑖), is a categorical variable representing whether the 

project follows the Behavior-Driven Development 

(BDD) or Test-Driven Development (TDD) 

methodology. This column is one-hot encoded into two 

binary variables, such that BDD = [1,0],  TDD =
[0,1]. For each observation (𝑖), the encoded vector is 

represented as [1,0] if the methodology is BDD and 

[0,1] if the methodology is TDD. 

2.2.4 Data Splitting 

The dataset is partitioned into training and testing sets 

using an 80%-20% split. Let (𝐗) and (𝐲) represent the 

feature matrix and the target vector, respectively. The 

split is performed such that 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒓𝒂𝒊𝒏 in 𝑅𝟘.𝟠𝑛×𝑓, 

 𝑿ts, 𝒚ts ∈ 𝑅𝟘.𝟚𝑛×𝑓. During training, the training set is 

further divided into (𝑘)-folds for cross-validation. For 

(𝑘 =  10), the data is split into 10 mutually exclusive 

subsets of approximately equal size. For each fold (𝑗), 

the validation set consists of the (𝑗)-th subset, and the 

training set consists of the remaining (𝑘 − 1) subsets. 

The objective is to minimize the generalization error by 

ensuring that each observation is used for validation 

exactly once. 

2.2.5. Sequence Transformation 

For sequential models, such as Long Short-Term 

Memory (LSTM) networks and Convolutional Neural 

Networks (CNNs), the data must be reshaped into a 

three-dimensional tensor. The feature matrix (𝑿 ∈
𝑅𝑛×𝑓) is transformed into 𝑋′ ∈ 𝑅𝑛×𝑡×𝑓 , 𝑤ℎ𝑒𝑟𝑒(𝑛) is the 

number of samples, (𝑡 =  1) represents the time step 

(since the data is static for each project), and (𝑓) is the 

number of features. Each reshaped sample can be 

expressed as presented in Equation 10. 
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𝑋𝑖
′ = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑓]

⊤
∈ 𝑅𝟙×𝑓 (10) 

This transformation enables sequential models to 

process the input as a time series, even if each sample 

represents a static observation. The preprocessing steps 

described above ensure that the dataset is clean, 

consistent, and appropriately formatted for deep learning 

models. By addressing missing values, outliers, and 

scaling inconsistencies, and transforming the data for 

sequence-based architectures, the pipeline ensures that 

the input data optimally supports the learning process. 

2.3. Deep Learning Model Architectures 

In this study, three deep learning architectures are 

utilized: Multi-Layer Perceptron (MLP), Long Short-

Term Memory (LSTM), and Convolutional Neural 

Network (CNN). Each architecture is specifically 

designed to leverage unique characteristics of the dataset 

and capture different aspects of its structure. The MLP 

model is a fully connected feedforward network 

optimized for processing tabular data. The MLP model 

is a feature vector (𝑋𝑖 ∈ 𝑅𝑓), where (𝑓) is the number 

of input features for each sample. The input layer 

directly accepts the (𝑓)-dimensional feature vector (𝑋𝑖). 

This is followed by two hidden layers, each represented 

as a dense transformation ℎ1 = σ(𝑊1𝑋𝑖 + 𝑏1),  ℎ2 =
σ(𝑊2ℎ1 + 𝑏2), where (𝑊1 ∈ 𝑅𝟚𝟝𝟞×𝑓), (𝑊2 ∈ 𝑅𝟙𝟚𝟠×𝟚𝟝𝟞) 

are weight matrices, (𝑏1) and (𝑏2) are the corresponding 

bias terms, and (σ(⋅)) is the ReLU activation function 

defined as σ(𝑧) = max(0, 𝑧) 

To prevent overfitting, Dropout regularization with a 

dropout probability (𝑝 =  0.3) is applied to each hidden 

layer, effectively setting a fraction of the layer’s 

activations to zero during training. The output layer is a 

single neuron with a linear activation function, 

producing the final prediction (𝑦𝑖̂) for the (𝑖)-th sample 

𝑦𝑖̂ = 𝑤3
⊤ℎ2 + 𝑏3, where (𝑤3 ∈ 𝑅𝟙𝟚𝟠) is the weight vector 

and (𝑏3) is the bias term. The model is optimized using 

the Mean Squared Error (MSE) loss function ℒ =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 , where (𝑦𝑖) is the true target value for 

the (𝑖)-th sample, and (𝑦𝑖̂) is the predicted value.  

Furthermore, the LSTM model is designed to capture 

temporal dependencies and long-range interactions, 

even though the dataset represents static data. The input 

to the LSTM model is a sequence tensor (𝑋 ∈ 𝑅𝑛×𝑡×𝑓), 

where (𝑛) is the number of samples, (𝑡) is the time step 

(here (𝑡 =  1)), and (𝑓) is the number of features. The 

LSTM model consists of two stacked layers. Each 

LSTM layer processes the input tensor sequentially and 

produces an output (ℎ𝑡) at each time step (𝑡). For a given 

LSTM layer, the computations are as presented in the 

Equation 11 to Equation 16. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (11) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (12) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (13) 

𝑔𝑡 = tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) (14) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (15) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (16) 
 

where (𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡)represent the input, forget, and output 

gates, respectively, (𝑐𝑡) is the cell state, and (ℎ𝑡) is the 

hidden state. (σ(⋅)) is the sigmoid activation, and (⊙) 

denotes element-wise multiplication. The first LSTM 

layer has 128 units, while the second layer has 64 units. 

Both layers use ReLU activation for their outputs, 

followed by Dropout regularization with (𝑝 =  0.3). 

The final output is passed to a dense layer with a single 

neuron and a linear activation function to produce the 

prediction (𝑦𝑖̂). The LSTM model is trained using the 

Adam optimizer with a learning rate of 0.001, and the 

MSE loss function is minimized. 

The CNN model is designed to extract spatial patterns 

from the dataset, treating the input as a one-dimensional 

sequence. The input to the CNN is a tensor (𝑋 ∈
𝑅𝑛×𝑡×𝑓), like the LSTM. The first layer is a one-

dimensional convolutional layer that applies (𝑘 =  64) 

filters, each with a kernel size of 3. For a given input 

sequence (𝑋𝑖 ∈ 𝑅𝑡×𝑓), the convolutional operation 

produces feature maps (𝐹𝑗) as 𝐹𝑗 = σ(𝑊𝑗 ∗ 𝑋𝑖 + 𝑏𝑗), 

where (∗) denotes the convolution operation, (𝑊𝑗 ∈

𝑅𝟛×𝑓) is the filter for the (𝑗)-th feature map, and (𝑏𝑗) is 

the bias term. The activation function (σ(⋅)) is ReLU. A 

MaxPooling1D layer with a pool size of 2 is applied to 

downsample the feature maps, reducing their 

dimensionality by half. The resulting tensor is flattened 

into a one-dimensional vector 𝑣 = Flatten(𝐹), where 

(𝐹) represents the pooled feature maps. This flattened 

vector is passed through a dense layer with 128 units, 

ReLU activation, and Dropout regularization ((𝑝 =
0.3)), followed by a final dense layer with a single 

neuron and a linear activation function to produce the 

prediction (𝑦𝑖̂). The CNN model is optimized using the 

Adam optimizer, with the MSE loss function serving as 

the objective to minimize. These three architectures: 

MLP, LSTM, and CNN are designed to leverage 

different structural characteristics of the data. The MLP 

captures static relationships, the LSTM explores 

sequential dependencies, and the CNN identifies spatial 

patterns, ensuring a comprehensive analysis of the 

dataset. All models are trained using backpropagation 

with the Adam optimizer and evaluated using the Mean 

Squared Error loss function. 
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2.4. Model Training and Evaluation 

The training of all models is conducted using a batch size 

of 32 to ensure efficient computation and stable gradient 

updates. An early stopping mechanism is employed to 

mitigate overfitting, halting training when the validation 

loss does not improve for 10 consecutive epochs. This is 

implemented using a patience parameter \(p = 10\), 

ensuring that the best weights are restored after training 

concludes. Additionally, the learning rate is dynamically 

adjusted using the ReduceLROnPlateau callback, which 

reduces the learning rate by a factor of 0.5 whenever the 

validation loss plateaus for five epochs. This mechanism 

ensures that the optimization process converges 

smoothly and avoids overshooting the minima. The 

performance of each trained model is evaluated using 

several metrics that capture different aspects of 

predictive accuracy and error characteristics. These 

metrics include Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and the coefficient of 

determination ((𝑅2)). The Root Mean Squared Error 

(RMSE) is defined as presented in Equation 17. 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

, 

(17) 

where (𝑦𝑖) represents the true target value for the (𝑖)-th 

sample, (𝑦𝑖̂) is the predicted target value, and (𝑛) is the 

total number of samples. RMSE emphasizes larger 

errors due to the quadratic term, making it sensitive to 

outliers. The Mean Absolute Error (MAE) is calculated 

as presented in Equation 18. 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

, 
(18) 

which measures the average magnitude of errors in 

predictions without considering their direction. MAE 

provides an intuitive interpretation of the average 

prediction error in the same units as the target variable. 

The Mean Absolute Percentage Error (MAPE) 

quantifies the prediction error as a percentage of the true 

value as presented in Equation 19. 

MAPE =
100

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

|

𝑛

𝑖=1

 
(19) 

where (| 
𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
 |) represents the relative error for each 

sample. MAPE is particularly useful for understanding 

the error in the context of the target variable's scale. The 

coefficient of determination ((𝑅2)) evaluates the 

proportion of variance in the target variable that is 

captured by the model. It is defined as presented in 

Equation 20. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

, 
(20) 

where (𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ) is the mean of the true target 

values. The numerator (∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1 ) represents the 

residual sum of squares (unexplained variance), while 

the denominator (∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 ) is the total sum of 

squares (total variance). An (𝑅2) value close to 1 

indicates that the model explains most of the variability 

in the target variable. To provide a comprehensive 

evaluation metric, a custom scoring function integrates 

RMSE, MAE, and (𝑅2). The custom score is defined as 

presented in Equation 21. 

Score = 𝑅2 −
RMSE + MAE

2
 

(21) 

This function balances the goodness of fit (measured by 

(𝑅2) against the magnitude of errors (measured by 

RMSE and MAE). By penalizing higher errors, the 

custom score ensures that models are evaluated 

holistically, considering both accuracy and robustness. 

This rigorous training and evaluation framework ensures 

that the models not only achieve high predictive 

performance but also generalize well to unseen data. By 

leveraging multiple metrics and a custom scoring 

function, the approach provides a nuanced 

understanding of each model's strengths and limitations. 

These insights are critical for selecting the most effective 

architecture for the dataset. 

3. Results and Discussion 

The performance of the three deep learning models: 

Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and Multi-Layer Perceptron 

(MLP) were evaluated across several metrics, including 

Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error 

(MAPE), (𝑅2) (coefficient of determination), and a 

custom score that integrates RMSE, MAE, and (𝑅2). 

These metrics collectively provide a nuanced view of the 

predictive accuracy, robustness, and generalization 

ability of each model as presented in the Table 1 and 

Figure 1. 

Table 1. Deep Learning Performance 

Model RMSE MAE MAPE R2 Custom Score 

CNN 7.83 7.27 27.79% -6.88 -14.43 

LSTM 8.81 8.46 32.83% -17.71 -26.34 

MLP 6.41 6.34 25.63% -4.21 -10.59 
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Figure 1. Deep Learning Model Comparison  

The MLP model demonstrates the best overall 

performance across all metrics. It achieves the lowest 

RMSE of (6.41), indicating that its predictions are 

closest to the true values in terms of squared error 

magnitude. Additionally, its MAE of (6.34) reflects 

minimal average deviation from the true values, and its 

MAPE of (25.63%) signifies the smallest percentage 

error, which is crucial in understanding the relative 

accuracy of predictions. The (𝑅2) score for MLP is 

(−4.21), which, while negative, still suggests it explains 

more variance in the data compared to CNN and LSTM. 

The custom score of (−10.59), which balances (𝑅2), 

RMSE, and MAE, highlights the MLP as the most robust 

model among the three. 

The CNN model performs moderately well, sitting 

between the MLP and LSTM in terms of accuracy. Its 

RMSE of (7.83) and MAE of (7.27) are higher than 

those of the MLP, indicating less accurate predictions. 

The CNN's MAPE of (27.79\%) is slightly worse than 

the MLP, demonstrating higher relative errors in its 

predictions. The (𝑅2) value of (−6.88) shows that the 

CNN explains less variance in the data than the MLP. Its 

custom score of (−14.43) reinforces this relative 

underperformance. However, CNN’s ability to extract 

spatial or feature-level patterns likely contributes to its 

intermediate performance, making it a viable option 

when MLP is unavailable. 

The LSTM model performs the worst among the three 

architectures. Its RMSE of (8.81) and MAE of (8.46) 

indicate substantial errors in its predictions. With a 

MAPE of (32.83%), the LSTM produces the largest 

relative deviations from the true values. The (𝑅2) score 

of (−17.71) is significantly lower than the other models, 

highlighting its inability to explain the variance in the 

dataset. The custom score of (−26.34) underscores the 

compounded impact of these errors, rendering the LSTM 

unsuitable for this dataset. The poor performance of the 

LSTM can be attributed to the static nature of the data, 

which lacks the sequential dependencies that LSTMs are 

designed to leverage. This mismatch between the dataset 

structure and the model's architecture severely impacts 

its predictive capabilities. 

The RMSE, which emphasizes larger errors due to its 

quadratic term, shows that the MLP minimizes 

significant deviations more effectively than the CNN 

and LSTM. The CNN's higher RMSE compared to the 

MLP indicates it struggles more with larger prediction 

errors, while the LSTM's even higher RMSE reveals its 

pronounced difficulty in aligning predictions with true 

values. The MAE, a measure of average absolute errors, 

aligns with the RMSE trends. The MLP's MAE of (6.34) 

confirms that it achieves the smallest average error. The 

CNN's MAE of  (7.27) and the LSTM's MAE of (8.46) 

indicate progressively worse average prediction 

accuracy. The MAPE provides additional context by 

normalizing the absolute errors as a percentage of the 

true values. The MLP's MAPE of (25.63%) 

demonstrates its ability to generalize well, producing 

smaller relative errors. In contrast, the CNN's MAPE of 

(27.79%) and the LSTM's MAPE of (32.83%) reveal 

their poorer performance in handling relative deviations. 

The (𝑅2) metric, which assesses the proportion of 

variance captured by the model, shows that the MLP 

explains the most variance, albeit with a negative value 

((−4.21)). The CNN's (𝑅2) of (−6.88) suggests it is 

less effective at capturing data variability, while the 

LSTM's (𝑅2) of (−17.71) confirms its inability to 

model the dataset effectively. The custom score, which 

combines (𝑅2), RMSE, and MAE, provides a holistic 

evaluation of each model. The MLP achieves the least 

negative score ((−10.59)), confirming its superior 

balance of accuracy and robustness. The CNN follows 

with a score of (−14.43), and the LSTM performs the 

worst with a score of (−26.34). The results demonstrate 

that the MLP is the most suitable architecture for the 

given dataset, as it achieves the lowest errors and the 

highest relative accuracy. The CNN's moderate 

performance suggests that it can extract meaningful 

patterns, though it is outperformed by the MLP due to 

the dataset's tabular nature. The LSTM's poor 

performance highlights the importance of aligning the 

model architecture with the dataset characteristics. Since 

the data lacks sequential relationships, the LSTM's 

temporal modeling capabilities are redundant, leading to 

overparameterization and poor generalization. 

4.  Conclusion 

This study evaluates the effectiveness of three machine 

learning architectures: Multi-Layer Perceptron (MLP), 

Convolutional Neural Network (CNN), and Long Short-

Term Memory (LSTM) for detecting Alzheimer’s 

Disease using a dataset encompassing demographic, 

lifestyle, medical, and cognitive features. Through 10-

fold cross-validation, the CNN emerged as the most 

effective model, achieving the highest metrics 

(accuracy: 88.65%, F1-score: 88.62%) due to its ability 

to capture complex spatial patterns. The MLP 

demonstrated moderate performance (accuracy: 84.41%, 

F1-score: 84.17%), while LSTM, more suited for 

temporal data, struggled with the tabular nature of the 
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dataset, achieving lower metrics (accuracy: 75.57%, F1-

score: 75.28%). These findings underscore the 

importance of aligning model architecture with data 

characteristics, with CNNs proving highly effective for 

complex feature interactions. This study highlights the 

potential of machine learning models as diagnostic tools 

in data-driven healthcare, suggesting future exploration 

of hybrid models, interpretability techniques, and 

validation on larger datasets to improve early detection 

and management of Alzheimer’s Disease. 
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