

Accepted: 21-11-2024 | Revision: 04-12-2024 | Publication: 31-12-2024 | doi: 10.37034/infeb.v6i4.1045

792

Jurnal Informatika Ekonomi Bisnis

http:/ /www.infeb.org

2024 Vol. 6 Iss . 4 Hal: 792-798 e-ISSN: 2714-8491

Comparative Analysis of Deep Learning Architectures for Predicting

Software Quality Metrics in Behavior-Driven and Test-Driven

Development Approaches

Gregorius Airlangga1

1Atma Jaya Catholic University of Indonesia

gregorius.airlangga@atmajaya.ac.id

Abstract

The impact of software development methodologies on quality metrics is a crucial area of study in empirical software

engineering. This research evaluates the performance of three deep learning architectures: Multi-Layer Perceptron (MLP),

Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM), in predicting key software quality indicators,

including maintainability index, test coverage, and code complexity, for projects developed using Behavior-Driven

Development (BDD) and Test-Driven Development (TDD) approaches. Using a static tabular dataset containing software

quality metrics, the models are evaluated based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), and the 𝑅2 coefficient. The MLP achieves the best performance, with the lowest RMSE

(6.41) and MAE (6.34) and the highest 𝑅2 value (−4.21), demonstrating its suitability for tabular data. The CNN performs

moderately, while the LSTM underperforms due to its reliance on temporal dependencies absent from the dataset. These results

emphasize the need for careful architectural alignment with dataset characteristics. The findings contribute to understanding

the predictive power of deep learning models in software quality analysis and highlight the potential of MLP as a robust tool

for such predictions. Future work can explore hybrid models and domain-specific feature engineering to enhance prediction

accuracy.

Keywords: Deep Learning Architectures, Tabular Data, Predictive Modeling, Multi-Layer Perceptron (MLP), Comparative

Analysis.

INFEB is licensed under a Creative Commons 4.0 International License.

1. Introduction

The ever-evolving landscape of software engineering

demands methodologies that not only ensure efficient

development cycles but also enhance software quality

[1]. [2], [3]. In this pursuit, Behavior-Driven

Development (BDD) and Test-Driven Development

(TDD) have emerged as two of the most prominent

methodologies in contemporary software engineering

practices [4]. While both methods advocate a shift-left

approach to software quality assurance, they

fundamentally differ in their principles and processes.

BDD emphasizes collaboration among stakeholders

through executable specifications, whereas TDD focuses

on rigorous unit testing driven by pre-written test cases

[5]. These methodologies have garnered significant

attention in the software engineering community,

particularly for their potential to enhance

maintainability, improve test coverage, and reduce code

complexity [6]. However, their relative effectiveness

and the contexts in which one may outperform the other

remain areas of active research [7].

Existing studies have explored the impacts of BDD and

TDD on various software quality metrics. For instance,

a research conducted a comparative analysis of BDD and

TDD practices in large-scale projects, finding that BDD

led to better stakeholder communication but at the cost

of increased initial development time [8]. Similarly,

another research analyzed the maintainability and test

coverage of software modules developed using TDD and

concluded that TDD enhanced code reliability but often

resulted in higher code complexity due to the extensive

focus on unit tests [9]. Despite these insights, the

methodologies’ effects on holistic quality indicators,

such as maintainability indices, code complexity, and

test coverage, remain underexplored, particularly in a

controlled, data-driven context. Furthermore, the

integration of advanced computational models for

analysis in these contexts remains limited, leaving an

opportunity to deepen understanding through modern

techniques [10].

The urgency of this research lies in addressing the

growing need for empirical evidence that supports

practitioners in selecting the most suitable methodology

for their specific development contexts [11]. As the

software industry increasingly adopts agile practices,

choosing between BDD and TDD has become critical,

particularly for projects requiring rapid development and

high-quality outcomes [4]. Current research often

provides qualitative assessments or limited quantitative

analyses, leaving significant gaps in understanding the

methodologies' comprehensive impacts. This research

aims to fill these gaps by leveraging deep learning

models, such as Long Short-Term Memory networks

http://www.infeb.org/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1570413673&&&2019
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

793

(LSTM), Convolutional Neural Networks (CNN), and

Multi-Layer Perceptrons (MLP), to analyze and predict

software quality metrics [12]. These models are

particularly suited for capturing complex patterns and

relationships within the dataset, enabling more nuanced

insights into the methodologies' effectiveness [13].

The primary goal of this study is to investigate the

relative effectiveness of BDD and TDD in influencing

software quality metrics, including maintainability, test

coverage, and code complexity [14]. By employing deep

learning techniques, this study not only compares the

methodologies but also demonstrates the potential of

advanced computational models in software engineering

research [15]. The contribution of this research lies in

introducing predictive capabilities to comparative

methodology studies, providing actionable insights into

quality outcomes based on development practices.

Furthermore, the use of LSTM, CNN, and MLP models

ensures that both sequential patterns and static

relationships in the data are effectively captured, leading

to robust and reliable predictions [16].

The remaining structure of this article is as follows: The

next section elaborates on the materials and methods

used in this study, detailing the dataset characteristics,

preprocessing steps, and the architectures of the deep

learning models applied. Subsequently, the results and

discussion section present a comparative analysis of the

performance metrics across different models,

highlighting key trends and implications for software

development methodologies. Finally, the conclusion

summarizes the findings, outlines directions for future

research, and emphasizes the practical relevance of this

study to the software engineering community.

2. Research Method

The methodology of this study is structured into three

main components: dataset description, preprocessing

steps, and the architecture of deep learning models

employed. This section provides a comprehensive

explanation of each component, ensuring a robust and

reproducible framework.

2.1. Dataset Description

The dataset utilized in this study provides a

comprehensive basis for comparing the Behavior-

Driven Development (BDD) and Test-Driven

Development (TDD) methodologies and can be

downloaded from [17]. Each observation in the dataset

represents a software project or module and can be

expressed mathematically as a tuple as presented in

Equation 1.

[𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑓}, for 𝑖 = 1,2, … , 𝑛] (1)

where (𝑛) is the total number of observations, and (𝑓)

denotes the number of features. These features include

essential software quality metrics such as the

development methodology ((𝑀𝑖)), maintainability

index ((𝑥𝑖1)), test coverage ((𝑥𝑖2)), code complexity

((𝑥𝑖3)), and development time ((𝑥𝑖4)). The dataset also

contains the target variable (𝑄𝑖), which represents the

overall software quality. The development methodology

feature, (𝑀𝑖), is a categorical variable defined as

follows. If the project follows the BDD methodology,

(𝑀𝑖 = 1). If the project follows the TDD methodology,

(𝑀𝑖 = 0). The maintainability index, (𝑥𝑖1), is a

numerical score that quantifies the ease of maintaining

the software. It is computed using Equation 2.

𝑠𝑥𝑖1

= 171 − 5.2 ⋅ log2(Cyclomatic Complexity)
− 0.23 ⋅ Lines of Code − 16.2
⋅ log2(Halstead Volume)

(2)

where the cyclomatic complexity, lines of code, and

Halstead volume are derived from the source code

metrics of the project. A higher value of (𝑥𝑖1) indicates

better maintainability. Test coverage, denoted as (𝑥𝑖2),

is a percentage that represents the proportion of code

covered by automated tests. It is calculated as presented

in Equation 3.

𝑥𝑖2 =
Lines of Code Tested

Total Lines of Code
× 100

(3)

Code complexity, represented as (𝑥𝑖3), is measured

using cyclomatic complexity, which quantifies the

number of independent paths through the program's

control flow graph. It is defined as presented in Equation

4.

𝑥𝑖3 = 𝑒 − 𝑛 + 2𝑝 (4)

where (𝑒) is the number of edges in the control flow

graph, (𝑛) is the number of nodes in the graph, and (𝑝)

is the number of connected components in the graph.

Development time, (𝑥𝑖4), is a continuous variable that

records the total time required to complete the project,

measured in hours. This is computed based on

timestamps associated with key milestones during the

development lifecycle. The target variable, software

quality ((𝑄𝑖)), is a composite metric that integrates

maintainability index ((𝑥𝑖1)), test coverage ((𝑥𝑖2)), and

code complexity ((𝑥𝑖3)) through a weighted linear

combination as presented in Equation 5.

𝑄𝑖 = α ⋅ 𝑥𝑖1 + β ⋅ 𝑥𝑖2 − γ ⋅ 𝑥𝑖3 (5)

where (α), (β), and (γ) represent the weights assigned

to maintainability, test coverage, and code complexity,

respectively. These weights are determined based on the

industry’s best practices and expert recommendations,

ensuring that (𝑄𝑖) reflects an accurate and holistic

measure of software quality. To summarize, the dataset

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

794

can be mathematically represented as presented in

Equation 6.

𝑋 ∈ 𝑅𝑛×𝑓 , 𝑦 ∈ 𝑅𝑛 (6)

where (𝑋) is the feature matrix containing (𝑛)

observations and (𝑓) features, and (𝑦) is the vector of

target quality scores for each project. The data set

structure ensures compatibility with advanced deep

learning models, facilitating a robust analysis of the

impacts of BDD and TDD methodologies on software

quality.

2.2. Preprocessing

This pipeline consists of several key stages: data

cleaning, feature scaling, categorical encoding, data

splitting, and sequence transformation.

2.2.1. Data Cleaning

The raw dataset often contains missing values and

outliers, which can adversely affect the training of deep

learning models. These issues are addressed through

imputation and outlier detection techniques. Missing

values in numerical features such as maintainability

index ((𝑀)), test coverage ((𝐶)), code complexity

((𝑋)), and development time ((𝑇)) are imputed using

the median value of each feature. Mathematically, the

imputed value for a feature (𝑥𝑖𝑗) in row (𝑖) is given in

Equation 7.

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗 if 𝑥𝑖𝑗 ≠ NaN

median(𝑥𝑗) if 𝑥𝑖𝑗 = NaN.

(7)

where (median(𝑥𝑗)) represents the median of feature

(𝑥𝑗) across all non-missing observations. Outlier

detection is performed using the Interquartile Range

(IQR) method. The IQR is defined as IQR = 𝑄3 − 𝑄1,

where (𝑄1) and (𝑄3) are the 25th and 75th percentiles

of the feature (𝑥𝑗), respectively. Any value (𝑥𝑖𝑗) that

satisfies: 𝑥𝑖𝑗 < 𝑄1 − 1.5 ⋅ IQR or 𝑥𝑖𝑗 > 𝑄3 + 1.5 ⋅

IQR is considered an outlier and is capped at the nearest

5th or 95th percentile, respectively in Equation 8 and

Equation 9.

𝑥𝑖𝑗
′ if 𝑥𝑖𝑗 ≠ NaN (8)

median(𝑥𝑗) if 𝑥𝑖𝑗 = NaN (9)

Here, (𝑃5(𝑥𝑗)) and (𝑃95(𝑥𝑗)) denote the 5th and 95th

percentiles of feature (𝑥𝑗), respectively.

2.2.2. Feature Scaling

To standardize the range of numerical features, Min-

Max normalization is applied. Each feature (𝑥𝑖𝑗) is

scaled to the range ([0,1]) using the formula:

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, where 𝑥𝑚𝑖𝑛 and (𝑥𝑚𝑎𝑥) are the

minimum and maximum values of the feature (𝑥𝑗),

respectively, across all observations. The scaled feature

(𝑥𝑖𝑗
′) ensures that all inputs to the model have uniform

ranges, reducing the risk of dominance by features with

larger magnitudes.

2.2.3. Categorical Encoding

The development methodology column, denoted as

(𝑀𝑖), is a categorical variable representing whether the

project follows the Behavior-Driven Development

(BDD) or Test-Driven Development (TDD)

methodology. This column is one-hot encoded into two

binary variables, such that BDD = [1,0], TDD =
[0,1]. For each observation (𝑖), the encoded vector is

represented as [1,0] if the methodology is BDD and

[0,1] if the methodology is TDD.

2.2.4 Data Splitting

The dataset is partitioned into training and testing sets

using an 80%-20% split. Let (𝐗) and (𝐲) represent the

feature matrix and the target vector, respectively. The

split is performed such that 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒓𝒂𝒊𝒏 in 𝑅𝟘.𝟠𝑛×𝑓,

 𝑿ts, 𝒚ts ∈ 𝑅𝟘.𝟚𝑛×𝑓. During training, the training set is

further divided into (𝑘)-folds for cross-validation. For

(𝑘 = 10), the data is split into 10 mutually exclusive

subsets of approximately equal size. For each fold (𝑗),

the validation set consists of the (𝑗)-th subset, and the

training set consists of the remaining (𝑘 − 1) subsets.

The objective is to minimize the generalization error by

ensuring that each observation is used for validation

exactly once.

2.2.5. Sequence Transformation

For sequential models, such as Long Short-Term

Memory (LSTM) networks and Convolutional Neural

Networks (CNNs), the data must be reshaped into a

three-dimensional tensor. The feature matrix (𝑿 ∈
𝑅𝑛×𝑓) is transformed into 𝑋′ ∈ 𝑅𝑛×𝑡×𝑓 , 𝑤ℎ𝑒𝑟𝑒(𝑛) is the

number of samples, (𝑡 = 1) represents the time step

(since the data is static for each project), and (𝑓) is the

number of features. Each reshaped sample can be

expressed as presented in Equation 10.

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

795

𝑋𝑖
′ = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑓]

⊤
∈ 𝑅𝟙×𝑓 (10)

This transformation enables sequential models to

process the input as a time series, even if each sample

represents a static observation. The preprocessing steps

described above ensure that the dataset is clean,

consistent, and appropriately formatted for deep learning

models. By addressing missing values, outliers, and

scaling inconsistencies, and transforming the data for

sequence-based architectures, the pipeline ensures that

the input data optimally supports the learning process.

2.3. Deep Learning Model Architectures

In this study, three deep learning architectures are

utilized: Multi-Layer Perceptron (MLP), Long Short-

Term Memory (LSTM), and Convolutional Neural

Network (CNN). Each architecture is specifically

designed to leverage unique characteristics of the dataset

and capture different aspects of its structure. The MLP

model is a fully connected feedforward network

optimized for processing tabular data. The MLP model

is a feature vector (𝑋𝑖 ∈ 𝑅𝑓), where (𝑓) is the number

of input features for each sample. The input layer

directly accepts the (𝑓)-dimensional feature vector (𝑋𝑖).

This is followed by two hidden layers, each represented

as a dense transformation ℎ1 = σ(𝑊1𝑋𝑖 + 𝑏1), ℎ2 =
σ(𝑊2ℎ1 + 𝑏2), where (𝑊1 ∈ 𝑅𝟚𝟝𝟞×𝑓), (𝑊2 ∈ 𝑅𝟙𝟚𝟠×𝟚𝟝𝟞)

are weight matrices, (𝑏1) and (𝑏2) are the corresponding

bias terms, and (σ(⋅)) is the ReLU activation function

defined as σ(𝑧) = max(0, 𝑧)

To prevent overfitting, Dropout regularization with a

dropout probability (𝑝 = 0.3) is applied to each hidden

layer, effectively setting a fraction of the layer’s

activations to zero during training. The output layer is a

single neuron with a linear activation function,

producing the final prediction (𝑦𝑖̂) for the (𝑖)-th sample

𝑦𝑖̂ = 𝑤3
⊤ℎ2 + 𝑏3, where (𝑤3 ∈ 𝑅𝟙𝟚𝟠) is the weight vector

and (𝑏3) is the bias term. The model is optimized using

the Mean Squared Error (MSE) loss function ℒ =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 , where (𝑦𝑖) is the true target value for

the (𝑖)-th sample, and (𝑦𝑖̂) is the predicted value.

Furthermore, the LSTM model is designed to capture

temporal dependencies and long-range interactions,

even though the dataset represents static data. The input

to the LSTM model is a sequence tensor (𝑋 ∈ 𝑅𝑛×𝑡×𝑓),

where (𝑛) is the number of samples, (𝑡) is the time step

(here (𝑡 = 1)), and (𝑓) is the number of features. The

LSTM model consists of two stacked layers. Each

LSTM layer processes the input tensor sequentially and

produces an output (ℎ𝑡) at each time step (𝑡). For a given

LSTM layer, the computations are as presented in the

Equation 11 to Equation 16.

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (11)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (12)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (13)

𝑔𝑡 = tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) (14)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (15)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (16)

where (𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡)represent the input, forget, and output

gates, respectively, (𝑐𝑡) is the cell state, and (ℎ𝑡) is the

hidden state. (σ(⋅)) is the sigmoid activation, and (⊙)

denotes element-wise multiplication. The first LSTM

layer has 128 units, while the second layer has 64 units.

Both layers use ReLU activation for their outputs,

followed by Dropout regularization with (𝑝 = 0.3).

The final output is passed to a dense layer with a single

neuron and a linear activation function to produce the

prediction (𝑦𝑖̂). The LSTM model is trained using the

Adam optimizer with a learning rate of 0.001, and the

MSE loss function is minimized.

The CNN model is designed to extract spatial patterns

from the dataset, treating the input as a one-dimensional

sequence. The input to the CNN is a tensor (𝑋 ∈
𝑅𝑛×𝑡×𝑓), like the LSTM. The first layer is a one-

dimensional convolutional layer that applies (𝑘 = 64)

filters, each with a kernel size of 3. For a given input

sequence (𝑋𝑖 ∈ 𝑅𝑡×𝑓), the convolutional operation

produces feature maps (𝐹𝑗) as 𝐹𝑗 = σ(𝑊𝑗 ∗ 𝑋𝑖 + 𝑏𝑗),

where (∗) denotes the convolution operation, (𝑊𝑗 ∈

𝑅𝟛×𝑓) is the filter for the (𝑗)-th feature map, and (𝑏𝑗) is

the bias term. The activation function (σ(⋅)) is ReLU. A

MaxPooling1D layer with a pool size of 2 is applied to

downsample the feature maps, reducing their

dimensionality by half. The resulting tensor is flattened

into a one-dimensional vector 𝑣 = Flatten(𝐹), where

(𝐹) represents the pooled feature maps. This flattened

vector is passed through a dense layer with 128 units,

ReLU activation, and Dropout regularization ((𝑝 =
0.3)), followed by a final dense layer with a single

neuron and a linear activation function to produce the

prediction (𝑦𝑖̂). The CNN model is optimized using the

Adam optimizer, with the MSE loss function serving as

the objective to minimize. These three architectures:

MLP, LSTM, and CNN are designed to leverage

different structural characteristics of the data. The MLP

captures static relationships, the LSTM explores

sequential dependencies, and the CNN identifies spatial

patterns, ensuring a comprehensive analysis of the

dataset. All models are trained using backpropagation

with the Adam optimizer and evaluated using the Mean

Squared Error loss function.

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

796

2.4. Model Training and Evaluation

The training of all models is conducted using a batch size

of 32 to ensure efficient computation and stable gradient

updates. An early stopping mechanism is employed to

mitigate overfitting, halting training when the validation

loss does not improve for 10 consecutive epochs. This is

implemented using a patience parameter \(p = 10\),

ensuring that the best weights are restored after training

concludes. Additionally, the learning rate is dynamically

adjusted using the ReduceLROnPlateau callback, which

reduces the learning rate by a factor of 0.5 whenever the

validation loss plateaus for five epochs. This mechanism

ensures that the optimization process converges

smoothly and avoids overshooting the minima. The

performance of each trained model is evaluated using

several metrics that capture different aspects of

predictive accuracy and error characteristics. These

metrics include Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and the coefficient of

determination ((𝑅2)). The Root Mean Squared Error

(RMSE) is defined as presented in Equation 17.

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

,

(17)

where (𝑦𝑖) represents the true target value for the (𝑖)-th

sample, (𝑦𝑖̂) is the predicted target value, and (𝑛) is the

total number of samples. RMSE emphasizes larger

errors due to the quadratic term, making it sensitive to

outliers. The Mean Absolute Error (MAE) is calculated

as presented in Equation 18.

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

,
(18)

which measures the average magnitude of errors in

predictions without considering their direction. MAE

provides an intuitive interpretation of the average

prediction error in the same units as the target variable.

The Mean Absolute Percentage Error (MAPE)

quantifies the prediction error as a percentage of the true

value as presented in Equation 19.

MAPE =
100

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

|

𝑛

𝑖=1

(19)

where (| 
𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
 |) represents the relative error for each

sample. MAPE is particularly useful for understanding

the error in the context of the target variable's scale. The

coefficient of determination ((𝑅2)) evaluates the

proportion of variance in the target variable that is

captured by the model. It is defined as presented in

Equation 20.

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

,
(20)

where (𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1) is the mean of the true target

values. The numerator (∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1) represents the

residual sum of squares (unexplained variance), while

the denominator (∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1) is the total sum of

squares (total variance). An (𝑅2) value close to 1

indicates that the model explains most of the variability

in the target variable. To provide a comprehensive

evaluation metric, a custom scoring function integrates

RMSE, MAE, and (𝑅2). The custom score is defined as

presented in Equation 21.

Score = 𝑅2 −
RMSE + MAE

2

(21)

This function balances the goodness of fit (measured by

(𝑅2) against the magnitude of errors (measured by

RMSE and MAE). By penalizing higher errors, the

custom score ensures that models are evaluated

holistically, considering both accuracy and robustness.

This rigorous training and evaluation framework ensures

that the models not only achieve high predictive

performance but also generalize well to unseen data. By

leveraging multiple metrics and a custom scoring

function, the approach provides a nuanced

understanding of each model's strengths and limitations.

These insights are critical for selecting the most effective

architecture for the dataset.

3. Results and Discussion

The performance of the three deep learning models:

Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and Multi-Layer Perceptron

(MLP) were evaluated across several metrics, including

Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error

(MAPE), (𝑅2) (coefficient of determination), and a

custom score that integrates RMSE, MAE, and (𝑅2).

These metrics collectively provide a nuanced view of the

predictive accuracy, robustness, and generalization

ability of each model as presented in the Table 1 and

Figure 1.

Table 1. Deep Learning Performance

Model RMSE MAE MAPE R2 Custom Score

CNN 7.83 7.27 27.79% -6.88 -14.43

LSTM 8.81 8.46 32.83% -17.71 -26.34

MLP 6.41 6.34 25.63% -4.21 -10.59

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

797

Figure 1. Deep Learning Model Comparison

The MLP model demonstrates the best overall

performance across all metrics. It achieves the lowest

RMSE of (6.41), indicating that its predictions are

closest to the true values in terms of squared error

magnitude. Additionally, its MAE of (6.34) reflects

minimal average deviation from the true values, and its

MAPE of (25.63%) signifies the smallest percentage

error, which is crucial in understanding the relative

accuracy of predictions. The (𝑅2) score for MLP is

(−4.21), which, while negative, still suggests it explains

more variance in the data compared to CNN and LSTM.

The custom score of (−10.59), which balances (𝑅2),

RMSE, and MAE, highlights the MLP as the most robust

model among the three.

The CNN model performs moderately well, sitting

between the MLP and LSTM in terms of accuracy. Its

RMSE of (7.83) and MAE of (7.27) are higher than

those of the MLP, indicating less accurate predictions.

The CNN's MAPE of (27.79\%) is slightly worse than

the MLP, demonstrating higher relative errors in its

predictions. The (𝑅2) value of (−6.88) shows that the

CNN explains less variance in the data than the MLP. Its

custom score of (−14.43) reinforces this relative

underperformance. However, CNN’s ability to extract

spatial or feature-level patterns likely contributes to its

intermediate performance, making it a viable option

when MLP is unavailable.

The LSTM model performs the worst among the three

architectures. Its RMSE of (8.81) and MAE of (8.46)

indicate substantial errors in its predictions. With a

MAPE of (32.83%), the LSTM produces the largest

relative deviations from the true values. The (𝑅2) score

of (−17.71) is significantly lower than the other models,

highlighting its inability to explain the variance in the

dataset. The custom score of (−26.34) underscores the

compounded impact of these errors, rendering the LSTM

unsuitable for this dataset. The poor performance of the

LSTM can be attributed to the static nature of the data,

which lacks the sequential dependencies that LSTMs are

designed to leverage. This mismatch between the dataset

structure and the model's architecture severely impacts

its predictive capabilities.

The RMSE, which emphasizes larger errors due to its

quadratic term, shows that the MLP minimizes

significant deviations more effectively than the CNN

and LSTM. The CNN's higher RMSE compared to the

MLP indicates it struggles more with larger prediction

errors, while the LSTM's even higher RMSE reveals its

pronounced difficulty in aligning predictions with true

values. The MAE, a measure of average absolute errors,

aligns with the RMSE trends. The MLP's MAE of (6.34)

confirms that it achieves the smallest average error. The

CNN's MAE of (7.27) and the LSTM's MAE of (8.46)

indicate progressively worse average prediction

accuracy. The MAPE provides additional context by

normalizing the absolute errors as a percentage of the

true values. The MLP's MAPE of (25.63%)

demonstrates its ability to generalize well, producing

smaller relative errors. In contrast, the CNN's MAPE of

(27.79%) and the LSTM's MAPE of (32.83%) reveal

their poorer performance in handling relative deviations.

The (𝑅2) metric, which assesses the proportion of

variance captured by the model, shows that the MLP

explains the most variance, albeit with a negative value

((−4.21)). The CNN's (𝑅2) of (−6.88) suggests it is

less effective at capturing data variability, while the

LSTM's (𝑅2) of (−17.71) confirms its inability to

model the dataset effectively. The custom score, which

combines (𝑅2), RMSE, and MAE, provides a holistic

evaluation of each model. The MLP achieves the least

negative score ((−10.59)), confirming its superior

balance of accuracy and robustness. The CNN follows

with a score of (−14.43), and the LSTM performs the

worst with a score of (−26.34). The results demonstrate

that the MLP is the most suitable architecture for the

given dataset, as it achieves the lowest errors and the

highest relative accuracy. The CNN's moderate

performance suggests that it can extract meaningful

patterns, though it is outperformed by the MLP due to

the dataset's tabular nature. The LSTM's poor

performance highlights the importance of aligning the

model architecture with the dataset characteristics. Since

the data lacks sequential relationships, the LSTM's

temporal modeling capabilities are redundant, leading to

overparameterization and poor generalization.

4. Conclusion

This study evaluates the effectiveness of three machine

learning architectures: Multi-Layer Perceptron (MLP),

Convolutional Neural Network (CNN), and Long Short-

Term Memory (LSTM) for detecting Alzheimer’s

Disease using a dataset encompassing demographic,

lifestyle, medical, and cognitive features. Through 10-

fold cross-validation, the CNN emerged as the most

effective model, achieving the highest metrics

(accuracy: 88.65%, F1-score: 88.62%) due to its ability

to capture complex spatial patterns. The MLP

demonstrated moderate performance (accuracy: 84.41%,

F1-score: 84.17%), while LSTM, more suited for

temporal data, struggled with the tabular nature of the

Gregorius Airlangga

Jurnal Informatika Ekonomi Bisnis − Vol. 6, Iss. 4 (2024) 792-798

798

dataset, achieving lower metrics (accuracy: 75.57%, F1-

score: 75.28%). These findings underscore the

importance of aligning model architecture with data

characteristics, with CNNs proving highly effective for

complex feature interactions. This study highlights the

potential of machine learning models as diagnostic tools

in data-driven healthcare, suggesting future exploration

of hybrid models, interpretability techniques, and

validation on larger datasets to improve early detection

and management of Alzheimer’s Disease.

References

[1] Pargaonkar, S. (2023). Synergizing requirements engineering
and quality assurance: A comprehensive exploration in software

quality engineering. International Journal of Science and

Research (IJSR), 12(8), 2003–2007.

[2] Al-Baik, O., Abu Alhija, M., Abdeljaber, H., & Ovais Ahmad,

M. (2024). Organizational debt—Roadblock to agility in

software engineering: Exploring an emerging concept and future
research for software excellence. PLOS ONE, 19(11), e0308183.

https://doi.org/10.1371/journal.pone.0308183

[3] Gupta, M. L., Puppala, R., Vadapalli, V. V., Gundu, H., &
Karthikeyan, C. V. S. S. (2024). Continuous integration, delivery

and deployment: A systematic review of approaches, tools,

challenges and practices. In International Conference on Recent
Trends in AI Enabled Technologies (pp. 76–89). Springer.

https://doi.org/10.1007/978-3-031-59114-3_7

[4] Cui, J. (2024). A comparative study on the impact of test-driven
development (TDD) and behavior-driven development (BDD)

on enterprise software delivery effectiveness. arXiv preprint

arXiv:2411.04141. https://doi.org/10.48550/arXiv.2411.04141

[5] Natarajan, T., & Pichai, S. (2024). Behaviour-driven

development and metrics framework for enhanced agile practices

in scrum teams. Information and Software Technology, 170,

107435. https://doi.org/10.1016/j.infsof.2024.107435

[6] Rahman, S., & Nadia, F. (2024). Pioneering testing technologies:

Advancing software quality through innovative methodologies
and frameworks. Journal of Artificial Intelligence and Machine

Learning in Management, 8(2), 44–70.

[7] Yuan, X., & Tang, X. (2024). Relative effectiveness of
morphological analysis training and context clue training on

multidimensional vocabulary knowledge. The Journal of Genetic

Psychology, 185(2), 77–90.

https://doi.org/10.1080/00221325.2024.1234567

[8] Irshad, M., Britto, R., & Petersen, K. (2021). Adapting behavior-

driven development (BDD) for large-scale software systems.
Journal of Systems and Software, 177, 110944.

https://doi.org/10.1016/j.jss.2021.110944

[9] Parsa, S., Zakeri-Nasrabadi, M., & Turhan, B. (2025).
Testability-driven development: An improvement to the TDD

efficiency. Computer Standards & Interfaces, 91, 103877.

https://doi.org/10.1016/j.csi.2025.103877

[10] Razavi, S. (2021). Deep learning, explained: Fundamentals,

explainability, and bridgeability to process-based modelling.

Environmental Modelling & Software, 144, 105159.

https://doi.org/10.1016/j.envsoft.2021.105159

[11] Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus

waterfall project management: Decision model for selecting the
appropriate approach to a project. Procedia Computer Science,

181, 746–756. https://doi.org/10.1016/j.procs.2021.12.094

[12] Ahmed, S. (2023). A software framework for predicting the
maize yield using modified multi-layer perceptron.

Sustainability, 15(4), 3017. https://doi.org/10.3390/su15043017

[13] Shu, X., & Ye, Y. (2023). Knowledge discovery: Methods from
data mining and machine learning. Social Science Research, 110,

102817. https://doi.org/10.1016/j.ssresearch.2023.102817

[14] Smart, J. F., & Molak, J. (2023). BDD in action: Behavior-driven
development for the whole software lifecycle. Simon and

Schuster.

[15] Krzywanski, J., Sosnowski, M., Grabowska, K., Zylka, A.,

Lasek, L., & Kijo-Kleczkowska, A. (2024). Advanced

computational methods for modeling, prediction and
optimization—a review. Materials, 17(14), 3521.

https://doi.org/10.3390/ma17143521

[16] Ahmed, S. F., Alam, M. S. B., Hassan, M., Rozbu, M. R., Ishtiak,
T., Rafa, N., Mofijur, M., Shawkat Ali, A. B. M., & Gandomi, A.

H. (2023). Deep learning modelling techniques: Current

progress, applications, advantages, and challenges. Artificial
Intelligence Review, 56(11), 13521–13617.

https://doi.org/10.1007/s10462-023-10420-9

[17] Yogi. (2024). TDD and BDD comparison dataset. Kaggle.
Retrieved November 19, 2024, from

https://www.kaggle.com/datasets/yogi2727/tdd-and-bdd-

comparison

