A Jurnal Informatika Ekonomi Bisnis

\o

INFER

http://www.infeb.org

2024 Vol. 6 Iss. 4 Hal: 792-798 e-ISSN: 2714-8491

Comparative Analysis of Deep Learning Architectures for Predicting
Software Quality Metrics in Behavior-Driven and Test-Driven
Development Approaches

Gregorius Airlangga'®

1Atma Jaya Catholic University of Indonesia
gregorius.airlangga@atmajaya.ac.id

Abstract

The impact of software development methodologies on quality metrics is a crucial area of study in empirical software
engineering. This research evaluates the performance of three deep learning architectures: Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM), in predicting key software quality indicators,
including maintainability index, test coverage, and code complexity, for projects developed using Behavior-Driven
Development (BDD) and Test-Driven Development (TDD) approaches. Using a static tabular dataset containing software
quality metrics, the models are evaluated based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and the R? coefficient. The MLP achieves the best performance, with the lowest RMSE
(6.41) and MAE (6.34) and the highest R? value (—4.21), demonstrating its suitability for tabular data. The CNN performs
moderately, while the LSTM underperforms due to its reliance on temporal dependencies absent from the dataset. These results
emphasize the need for careful architectural alignment with dataset characteristics. The findings contribute to understanding
the predictive power of deep learning models in software quality analysis and highlight the potential of MLP as a robust tool
for such predictions. Future work can explore hybrid models and domain-specific feature engineering to enhance prediction
accuracy.

Keywords: Deep Learning Architectures, Tabular Data, Predictive Modeling, Multi-Layer Perceptron (MLP), Comparative

Analysis.

INFEB is licensed under a Creative Commons 4.0 International License.

1. Introduction

The ever-evolving landscape of software engineering
demands methodologies that not only ensure efficient
development cycles but also enhance software quality
[1]. [2], [3]- In this pursuit, Behavior-Driven
Development (BDD) and Test-Driven Development
(TDD) have emerged as two of the most prominent
methodologies in contemporary software engineering
practices [4]. While both methods advocate a shift-left
approach to software quality assurance, they
fundamentally differ in their principles and processes.
BDD emphasizes collaboration among stakeholders
through executable specifications, whereas TDD focuses
on rigorous unit testing driven by pre-written test cases
[5]. These methodologies have garnered significant
attention in the software engineering community,
particularly ~ for their potential to enhance
maintainability, improve test coverage, and reduce code
complexity [6]. However, their relative effectiveness
and the contexts in which one may outperform the other
remain areas of active research [7].

Existing studies have explored the impacts of BDD and
TDD on various software quality metrics. For instance,
a research conducted a comparative analysis of BDD and
TDD practices in large-scale projects, finding that BDD
led to better stakeholder communication but at the cost

of increased initial development time [8]. Similarly,
another research analyzed the maintainability and test
coverage of software modules developed using TDD and
concluded that TDD enhanced code reliability but often
resulted in higher code complexity due to the extensive
focus on unit tests [9]. Despite these insights, the
methodologies’ effects on holistic quality indicators,
such as maintainability indices, code complexity, and
test coverage, remain underexplored, particularly in a
controlled, data-driven context. Furthermore, the
integration of advanced computational models for
analysis in these contexts remains limited, leaving an
opportunity to deepen understanding through modern
techniques [10].

The urgency of this research lies in addressing the
growing need for empirical evidence that supports
practitioners in selecting the most suitable methodology
for their specific development contexts [11]. As the
software industry increasingly adopts agile practices,
choosing between BDD and TDD has become critical,
particularly for projects requiring rapid development and
high-quality outcomes [4]. Current research often
provides qualitative assessments or limited quantitative
analyses, leaving significant gaps in understanding the
methodologies' comprehensive impacts. This research
aims to fill these gaps by leveraging deep learning
models, such as Long Short-Term Memory networks

Accepted: 21-11-2024 | Revision: 04-12-2024 | Publication: 31-12-2024 | doi: 10.37034/infeb.v6i4.1045

792

http://www.infeb.org/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1570413673&&&2019
mailto:gregorius.airlangga@atmajaya.ac.id
mailto:gregorius.airlangga@atmajaya.ac.id

Gregorius Airlangga

(LSTM), Convolutional Neural Networks (CNN), and
Multi-Layer Perceptrons (MLP), to analyze and predict
software quality metrics [12]. These models are
particularly suited for capturing complex patterns and
relationships within the dataset, enabling more nuanced
insights into the methodologies' effectiveness [13].

The primary goal of this study is to investigate the
relative effectiveness of BDD and TDD in influencing
software quality metrics, including maintainability, test
coverage, and code complexity [14]. By employing deep
learning techniques, this study not only compares the
methodologies but also demonstrates the potential of
advanced computational models in software engineering
research [15]. The contribution of this research lies in
introducing predictive capabilities to comparative
methodology studies, providing actionable insights into
quality outcomes based on development practices.
Furthermore, the use of LSTM, CNN, and MLP models
ensures that both sequential patterns and static
relationships in the data are effectively captured, leading
to robust and reliable predictions [16].

The remaining structure of this article is as follows: The
next section elaborates on the materials and methods
used in this study, detailing the dataset characteristics,
preprocessing steps, and the architectures of the deep
learning models applied. Subsequently, the results and
discussion section present a comparative analysis of the
performance metrics across different models,
highlighting key trends and implications for software
development methodologies. Finally, the conclusion
summarizes the findings, outlines directions for future
research, and emphasizes the practical relevance of this
study to the software engineering community.

2. Research Method

The methodology of this study is structured into three
main components: dataset description, preprocessing
steps, and the architecture of deep learning models
employed. This section provides a comprehensive
explanation of each component, ensuring a robust and
reproducible framework.

2.1. Dataset Description

The dataset utilized in this study provides a
comprehensive basis for comparing the Behavior-
Driven Development (BDD) and Test-Driven
Development (TDD) methodologies and can be
downloaded from [17]. Each observation in the dataset
represents a software project or module and can be
expressed mathematically as a tuple as presented in
Equation 1.

[Xi = {xil,xiz, ...,xif}, fori = 1,2, ...,n] (1)
where (n) is the total number of observations, and (f)
denotes the number of features. These features include
essential software quality metrics such as the

development methodology ((M;)), maintainability
index ((x;1)), test coverage ((x;z)), code complexity
((x;3)), and development time ((x;4)). The dataset also
contains the target variable (Q;), which represents the
overall software quality. The development methodology
feature, (M;), is a categorical variable defined as
follows. If the project follows the BDD methodology,
(M; = 1). If the project follows the TDD methodology,
(M; = 0). The maintainability index, (x;;), is a
numerical score that quantifies the ease of maintaining
the software. It is computed using Equation 2.
SXi1 2
=171 — 5.2 - log, (Cyclomatic Complexity)
— 0.23 - Lines of Code — 16.2
- log, (Halstead Volume)

where the cyclomatic complexity, lines of code, and
Halstead volume are derived from the source code
metrics of the project. A higher value of (x;;) indicates
better maintainability. Test coverage, denoted as (x;,),
is a percentage that represents the proportion of code
covered by automated tests. It is calculated as presented
in Equation 3.

_ Lines of Code Tested % 100
%2 = "I 5tal Lines of Code

®)

Code complexity, represented as (x;3), iS measured
using cyclomatic complexity, which quantifies the
number of independent paths through the program's
control flow graph. It is defined as presented in Equation
4,

Xz =e—n+2p 4
where (e) is the number of edges in the control flow
graph, (n) is the number of nodes in the graph, and (p)
is the number of connected components in the graph.
Development time, (x;,), is a continuous variable that
records the total time required to complete the project,
measured in hours. This is computed based on
timestamps associated with key milestones during the
development lifecycle. The target variable, software
quality ((Q;)), is a composite metric that integrates
maintainability index ((x;;)), test coverage ((x;;)), and
code complexity ((x;3)) through a weighted linear
combination as presented in Equation 5.

Qi=a-xy+B X2 =Y X3 ®)
where (), (B), and (y) represent the weights assigned
to maintainability, test coverage, and code complexity,
respectively. These weights are determined based on the
industry’s best practices and expert recommendations,
ensuring that (Q;) reflects an accurate and holistic
measure of software quality. To summarize, the dataset

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

793

Gregorius Airlangga

can be mathematically represented as presented in
Equation 6.

XeRY™, yeR" (6)
where (X) is the feature matrix containing (n)
observations and (f) features, and (y) is the vector of
target quality scores for each project. The data set
structure ensures compatibility with advanced deep
learning models, facilitating a robust analysis of the
impacts of BDD and TDD methodologies on software
quality.

2.2. Preprocessing

This pipeline consists of several key stages: data
cleaning, feature scaling, categorical encoding, data
splitting, and sequence transformation.

2.2.1. Data Cleaning

The raw dataset often contains missing values and
outliers, which can adversely affect the training of deep
learning models. These issues are addressed through
imputation and outlier detection techniques. Missing
values in numerical features such as maintainability
index ((M)), test coverage ((C)), code complexity
((X)), and development time ((T)) are imputed using
the median value of each feature. Mathematically, the
imputed value for a feature (x;;) in row (i) is given in
Equation 7.

X xij lf.x,_] * NaN (7)

o
7" median(x;) ifx; = NaN.

where (median(x;)) represents the median of feature
(xj) across all non-missing observations. Outlier
detection is performed using the Interquartile Range
(IQR) method. The IQR is defined as IQR = Q3 — Q4,
where (Q,) and (Q3) are the 25th and 75th percentiles
of the feature (x;), respectively. Any value (x;;) that
satisfies: x;; <Q; —1.5-IQR or x;>Q;+15-
IQR is considered an outlier and is capped at the nearest

5th or 95th percentile, respectively in Equation 8 and
Equation 9.

xij if x;; # NaN (8)
9)

median(xj) if x;; = NaN

Here, (Ps(x;)) and (Pys(x;)) denote the 5th and 95th
percentiles of feature (x;), respectively.

2.2.2. Feature Scaling

To standardize the range of numerical features, Min-
Max normalization is applied. Each feature (x;;) is
scaled to the range ([0,1]) using the formula:

1 Xij7Xmin
by Xmax—Xmin’
minimum and maximum values of the feature (x;),
respectively, across all observations. The scaled feature
(x{;) ensures that all inputs to the model have uniform
ranges, reducing the risk of dominance by features with
larger magnitudes.

X where X, and (x,..) are the

2.2.3. Categorical Encoding

The development methodology column, denoted as
(M;), is a categorical variable representing whether the
project follows the Behavior-Driven Development
(BDD) or Test-Driven Development (TDD)
methodology. This column is one-hot encoded into two
binary variables, such that BDD = [1,0], TDD =
[0,1]. For each observation (i), the encoded vector is
represented as [1,0] if the methodology is BDD and
[0,1] if the methodology is TDD.

2.2.4 Data Splitting

The dataset is partitioned into training and testing sets
using an 80%-20% split. Let (X) and (y) represent the
feature matrix and the target vector, respectively. The
split is performed such that X qin, Yerain iN RZES,

X5, Vis € R%?™ During training, the training set is
further divided into (k)-folds for cross-validation. For
(k = 10), the data is split into 10 mutually exclusive
subsets of approximately equal size. For each fold (),
the validation set consists of the (j)-th subset, and the
training set consists of the remaining (k — 1) subsets.
The objective is to minimize the generalization error by
ensuring that each observation is used for validation
exactly once.

2.2.5. Sequence Transformation

For sequential models, such as Long Short-Term
Memory (LSTM) networks and Convolutional Neural
Networks (CNNs), the data must be reshaped into a
three-dimensional tensor. The feature matrix (X €
R™Y is transformed into X’ € R™f, where(n) is the
number of samples, (t 1) represents the time step
(since the data is static for each project), and (f) is the
number of features. Each reshaped sample can be
expressed as presented in Equation 10.

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

794

Gregorius Airlangga

XI.’ = [xil, Xi2, ...,xl-f]T € Rﬂxf (10)

This transformation enables sequential models to
process the input as a time series, even if each sample
represents a static observation. The preprocessing steps
described above ensure that the dataset is clean,
consistent, and appropriately formatted for deep learning
models. By addressing missing values, outliers, and
scaling inconsistencies, and transforming the data for
sequence-based architectures, the pipeline ensures that
the input data optimally supports the learning process.

2.3. Deep Learning Model Architectures

In this study, three deep learning architectures are
utilized: Multi-Layer Perceptron (MLP), Long Short-
Term Memory (LSTM), and Convolutional Neural
Network (CNN). Each architecture is specifically
designed to leverage unique characteristics of the dataset
and capture different aspects of its structure. The MLP
model is a fully connected feedforward network
optimized for processing tabular data. The MLP model
is a feature vector (X; € R'), where (f) is the number
of input features for each sample. The input layer
directly accepts the (f)-dimensional feature vector (X;).
This is followed by two hidden layers, each represented
as a dense transformation h; = c(W,X; + b;), h,
o(Wyhy + by), where (W, € R*56%), (W, € R128%256)
are weight matrices, (b;) and (b,) are the corresponding
bias terms, and (a(-)) is the ReLU activation function
defined as o(z) = max(0, z)

To prevent overfitting, Dropout regularization with a
dropout probability (p = 0.3) is applied to each hidden
layer, effectively setting a fraction of the layer’s
activations to zero during training. The output layer is a
single neuron with a linear activation function,
producing the final prediction (%,) for the (i)-th sample
5, = wy " + by, where (w5 € R™%) is the weight vector
and (b5) is the bias term. The model is optimized using
the Mean Squared Error (MSE) loss function £ =

% ™. (vi —)3, where (y;) is the true target value for
the (i)-th sample, and (33) is the predicted value.

Furthermore, the LSTM model is designed to capture
temporal dependencies and long-range interactions,
even though the dataset represents static data. The input
to the LSTM model is a sequence tensor (X € R™/),
where (n) is the number of samples, (t) is the time step
(here (t = 1)), and (f) is the number of features. The
LSTM model consists of two stacked layers. Each
LSTM layer processes the input tensor sequentially and
produces an output (h;) at each time step (t). For a given
LSTM layer, the computations are as presented in the
Equation 11 to Equation 16.

ie = oWy + Uphe_y + by) (1)

fe = oc(Wyx, + Uhy_q + by) (12)
0y = o(Wyx; + Uyhs_y + b,) (13)
g = tanh(W,x, + Ugh,_4 + by,) (14)
G =fi0Oc 1 +i:0Og: (15)

h: = o © tanh(c;) (16)

where (i, f;, 0.)represent the input, forget, and output
gates, respectively, (c;) is the cell state, and (h,) is the
hidden state. (a(-)) is the sigmoid activation, and (©)
denotes element-wise multiplication. The first LSTM
layer has 128 units, while the second layer has 64 units.
Both layers use ReLU activation for their outputs,
followed by Dropout regularization with (p = 0.3).
The final output is passed to a dense layer with a single
neuron and a linear activation function to produce the
prediction (%,). The LSTM model is trained using the
Adam optimizer with a learning rate of 0.001, and the
MSE loss function is minimized.

The CNN model is designed to extract spatial patterns
from the dataset, treating the input as a one-dimensional
sequence. The input to the CNN is a tensor (X €
R™f), like the LSTM. The first layer is a one-
dimensional convolutional layer that applies (k = 64)
filters, each with a kernel size of 3. For a given input
sequence (X; € R®), the convolutional operation
produces feature maps (F;) as F; = o(W = X; + b)),
where () denotes the convolution operation, (W; €
R¥TY is the filter for the (j)-th feature map, and (b)) is
the bias term. The activation function (o(-)) is ReLU. A
MaxPoolinglD layer with a pool size of 2 is applied to
downsample the feature maps, reducing their
dimensionality by half. The resulting tensor is flattened
into a one-dimensional vector v = Flatten(F), where
(F) represents the pooled feature maps. This flattened
vector is passed through a dense layer with 128 units,
ReLU activation, and Dropout regularization ((p =
0.3)), followed by a final dense layer with a single
neuron and a linear activation function to produce the
prediction (%,). The CNN model is optimized using the
Adam optimizer, with the MSE loss function serving as
the objective to minimize. These three architectures:
MLP, LSTM, and CNN are designed to leverage
different structural characteristics of the data. The MLP
captures static relationships, the LSTM explores
sequential dependencies, and the CNN identifies spatial
patterns, ensuring a comprehensive analysis of the
dataset. All models are trained using backpropagation
with the Adam optimizer and evaluated using the Mean
Squared Error loss function.

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

795

Gregorius Airlangga

2.4. Model Training and Evaluation

The training of all models is conducted using a batch size
of 32 to ensure efficient computation and stable gradient
updates. An early stopping mechanism is employed to
mitigate overfitting, halting training when the validation
loss does not improve for 10 consecutive epochs. This is
implemented using a patience parameter \(p = 10\),
ensuring that the best weights are restored after training
concludes. Additionally, the learning rate is dynamically
adjusted using the ReduceLROnPlateau callback, which
reduces the learning rate by a factor of 0.5 whenever the
validation loss plateaus for five epochs. This mechanism
ensures that the optimization process converges
smoothly and avoids overshooting the minima. The
performance of each trained model is evaluated using
several metrics that capture different aspects of
predictive accuracy and error characteristics. These
metrics include Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and the coefficient of
determination ((R?)). The Root Mean Squared Error
(RMSE) is defined as presented in Equation 17.

n
1 i 502
Ez yi —)%
i=1

where (y;) represents the true target value for the (i)-th
sample, (3,) is the predicted target value, and (n) is the
total number of samples. RMSE emphasizes larger
errors due to the quadratic term, making it sensitive to
outliers. The Mean Absolute Error (MAE) is calculated
as presented in Equation 18.

17
RMSE =

AR = 1 = ~ (18)
—;Zlyi—'yll,
i=

which measures the average magnitude of errors in
predictions without considering their direction. MAE
provides an intuitive interpretation of the average
prediction error in the same units as the target variable.
The Mean Absolute Percentage Error (MAPE)
quantifies the prediction error as a percentage of the true
value as presented in Equation 19.

100« (19)

MAPE = —
n

i=1

Yi— N

Vi

where (| % |) represents the relative error for each
L

sample. MAPE is particularly useful for understanding
the error in the context of the target variable's scale. The
coefficient of determination ((R?)) evaluates the
proportion of variance in the target variable that is

captured by the model. It is defined as presented in

Equation 20.

_ Y —9)?
L0 =9

R2=1 (20)

where (¥ =% .y is the mean of the true target

values. The numerator (X, (v; — 7,)%) represents the
residual sum of squares (unexplained variance), while
the denominator (X, (y; —)?) is the total sum of
squares (total variance). An (R?) value close to 1
indicates that the model explains most of the variability
in the target variable. To provide a comprehensive
evaluation metric, a custom scoring function integrates
RMSE, MAE, and (R?). The custom score is defined as
presented in Equation 21.

RMSE + MAE 1)

— p2

Score = R >
This function balances the goodness of fit (measured by
(R?) against the magnitude of errors (measured by
RMSE and MAE). By penalizing higher errors, the
custom score ensures that models are evaluated
holistically, considering both accuracy and robustness.
This rigorous training and evaluation framework ensures
that the models not only achieve high predictive
performance but also generalize well to unseen data. By
leveraging multiple metrics and a custom scoring
function, the approach provides a nuanced
understanding of each model's strengths and limitations.
These insights are critical for selecting the most effective
architecture for the dataset.

3. Results and Discussion

The performance of the three deep learning models:
Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and Multi-Layer Perceptron
(MLP) were evaluated across several metrics, including
Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error
(MAPE), (R?) (coefficient of determination), and a
custom score that integrates RMSE, MAE, and (R?).
These metrics collectively provide a nuanced view of the
predictive accuracy, robustness, and generalization
ability of each model as presented in the Table 1 and
Figure 1.

Table 1. Deep Learning Performance

Model RMSE MAE MAPE R? Custom Score
CNN 783 727 27.79% -6.88 -14.43
LSTM 8.81 846 3283% -17.71 -26.34
MLP 6.41 6.34 25.63% -4.21 -10.59

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

796

Gregorius Airlangga

Model Performance Comparison

10
. RMSE

I RZ
0 l

il

a
=

g

LST™

Figure 1. Deep Learning Model Comparison

The MLP model demonstrates the best overall
performance across all metrics. It achieves the lowest
RMSE of (6.41), indicating that its predictions are
closest to the true values in terms of squared error
magnitude. Additionally, its MAE of (6.34) reflects
minimal average deviation from the true values, and its
MAPE of (25.63%) signifies the smallest percentage
error, which is crucial in understanding the relative
accuracy of predictions. The (R?) score for MLP is
(—4.21), which, while negative, still suggests it explains
more variance in the data compared to CNN and LSTM.
The custom score of (—10.59), which balances (R?),
RMSE, and MAE, highlights the MLP as the most robust
model among the three.

The CNN model performs moderately well, sitting
between the MLP and LSTM in terms of accuracy. Its
RMSE of (7.83) and MAE of (7.27) are higher than
those of the MLP, indicating less accurate predictions.
The CNN's MAPE of (27.79\%) is slightly worse than
the MLP, demonstrating higher relative errors in its
predictions. The (R?) value of (—6.88) shows that the
CNN explains less variance in the data than the MLP. Its
custom score of (—14.43) reinforces this relative
underperformance. However, CNN’s ability to extract
spatial or feature-level patterns likely contributes to its
intermediate performance, making it a viable option
when MLP is unavailable.

The LSTM model performs the worst among the three
architectures. I1ts RMSE of (8.81) and MAE of (8.46)
indicate substantial errors in its predictions. With a
MAPE of (32.83%), the LSTM produces the largest
relative deviations from the true values. The (R?) score
of (—17.71) is significantly lower than the other models,
highlighting its inability to explain the variance in the
dataset. The custom score of (—26.34) underscores the
compounded impact of these errors, rendering the LSTM
unsuitable for this dataset. The poor performance of the
LSTM can be attributed to the static nature of the data,
which lacks the sequential dependencies that LSTMs are
designed to leverage. This mismatch between the dataset
structure and the model's architecture severely impacts
its predictive capabilities.

The RMSE, which emphasizes larger errors due to its
quadratic term, shows that the MLP minimizes
significant deviations more effectively than the CNN
and LSTM. The CNN's higher RMSE compared to the
MLP indicates it struggles more with larger prediction
errors, while the LSTM's even higher RMSE reveals its
pronounced difficulty in aligning predictions with true
values. The MAE, a measure of average absolute errors,
aligns with the RMSE trends. The MLP's MAE of (6.34)
confirms that it achieves the smallest average error. The
CNN's MAE of (7.27) and the LSTM's MAE of (8.46)
indicate progressively worse average prediction
accuracy. The MAPE provides additional context by
normalizing the absolute errors as a percentage of the
true values. The MLP's MAPE of (25.63%)
demonstrates its ability to generalize well, producing
smaller relative errors. In contrast, the CNN's MAPE of
(27.79%) and the LSTM's MAPE of (32.83%) reveal
their poorer performance in handling relative deviations.

The (R?) metric, which assesses the proportion of
variance captured by the model, shows that the MLP
explains the most variance, albeit with a negative value
((—4.21)). The CNN's (R?) of (—6.88) suggests it is
less effective at capturing data variability, while the
LSTM's (R?) of (—17.71) confirms its inability to
model the dataset effectively. The custom score, which
combines (R?), RMSE, and MAE, provides a holistic
evaluation of each model. The MLP achieves the least
negative score ((—10.59)), confirming its superior
balance of accuracy and robustness. The CNN follows
with a score of (—14.43), and the LSTM performs the
worst with a score of (—26.34). The results demonstrate
that the MLP is the most suitable architecture for the
given dataset, as it achieves the lowest errors and the
highest relative accuracy. The CNN's moderate
performance suggests that it can extract meaningful
patterns, though it is outperformed by the MLP due to
the dataset's tabular nature. The LSTM's poor
performance highlights the importance of aligning the
model architecture with the dataset characteristics. Since
the data lacks sequential relationships, the LSTM's
temporal modeling capabilities are redundant, leading to
overparameterization and poor generalization.

4. Conclusion

This study evaluates the effectiveness of three machine
learning architectures: Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and Long Short-
Term Memory (LSTM) for detecting Alzheimer’s
Disease using a dataset encompassing demographic,
lifestyle, medical, and cognitive features. Through 10-
fold cross-validation, the CNN emerged as the most
effective model, achieving the highest metrics
(accuracy: 88.65%, F1-score: 88.62%) due to its ability
to capture complex spatial patterns. The MLP
demonstrated moderate performance (accuracy: 84.41%,
Fl-score: 84.17%), while LSTM, more suited for
temporal data, struggled with the tabular nature of the

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

797

Gregorius Airlangga

dataset, achieving lower metrics (accuracy: 75.57%, F1-

score:

75.28%). These findings underscore the

importance of aligning model architecture with data
characteristics, with CNNs proving highly effective for
complex feature interactions. This study highlights the
potential of machine learning models as diagnostic tools
in data-driven healthcare, suggesting future exploration
of hybrid models, interpretability techniques, and
validation on larger datasets to improve early detection
and management of Alzheimer’s Disease.

References

(1]

[2]

B3]

(4]

[5]

(6]

[7]

Pargaonkar, S. (2023). Synergizing requirements engineering
and quality assurance: A comprehensive exploration in software
quality engineering. International Journal of Science and
Research (IJSR), 12(8), 2003-2007.

Al-Baik, O., Abu Alhija, M., Abdeljaber, H., & Ovais Ahmad,
M. (2024). Organizational debt—Roadblock to agility in
software engineering: Exploring an emerging concept and future
research for software excellence. PLOS ONE, 19(11), e0308183.
https://doi.org/10.1371/journal.pone.0308183

Gupta, M. L., Puppala, R., Vadapalli, V. V., Gundu, H., &
Karthikeyan, C. V. S. S. (2024). Continuous integration, delivery
and deployment: A systematic review of approaches, tools,
challenges and practices. In International Conference on Recent
Trends in Al Enabled Technologies (pp. 76-89). Springer.
https://doi.org/10.1007/978-3-031-59114-3_7

Cui, J. (2024). A comparative study on the impact of test-driven
development (TDD) and behavior-driven development (BDD)
on enterprise software delivery effectiveness. arXiv preprint
arXiv:2411.04141. https://doi.org/10.48550/arXiv.2411.04141

Natarajan, T., & Pichai, S. (2024). Behaviour-driven
development and metrics framework for enhanced agile practices
in scrum teams. Information and Software Technology, 170,
107435. https://doi.org/10.1016/j.infsof.2024.107435

Rahman, S., & Nadia, F. (2024). Pioneering testing technologies:
Advancing software quality through innovative methodologies
and frameworks. Journal of Artificial Intelligence and Machine
Learning in Management, 8(2), 44-70.

Yuan, X., & Tang, X. (2024). Relative effectiveness of
morphological analysis training and context clue training on
multidimensional vocabulary knowledge. The Journal of Genetic

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Psychology, 185(2),
https://doi.org/10.1080/00221325.2024.1234567

Irshad, M., Britto, R., & Petersen, K. (2021). Adapting behavior-
driven development (BDD) for large-scale software systems.

77-90.

Journal of Systems and Software, 177, 110944.
https://doi.org/10.1016/j.jss.2021.110944
Parsa, S., Zakeri-Nasrabadi, M., & Turhan, B. (2025).

Testability-driven development: An improvement to the TDD
efficiency. Computer Standards & Interfaces, 91, 103877.
https://doi.org/10.1016/j.csi.2025.103877

Razavi, S. (2021). Deep learning, explained: Fundamentals,
explainability, and bridgeability to process-based modelling.
Environmental Modelling & Software, 144, 105159.
https://doi.org/10.1016/j.envsoft.2021.105159

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus
waterfall project management: Decision model for selecting the
appropriate approach to a project. Procedia Computer Science,
181, 746-756. https://doi.org/10.1016/j.procs.2021.12.094

Ahmed, S. (2023). A software framework for predicting the
maize yield using modified multi-layer perceptron.
Sustainability, 15(4), 3017. https://doi.org/10.3390/su15043017

Shu, X., & Ye, Y. (2023). Knowledge discovery: Methods from
data mining and machine learning. Social Science Research, 110,
102817. https://doi.org/10.1016/j.ssresearch.2023.102817

Smart, J. F., & Molak, J. (2023). BDD in action: Behavior-driven
development for the whole software lifecycle. Simon and
Schuster.

Krzywanski, J., Sosnowski, M., Grabowska, K., Zylka, A.,
Lasek, L., & Kijo-Kleczkowska, A. (2024). Advanced
computational methods for modeling, prediction and
optimization—a review. Materials, 17(14), 3521.
https://doi.org/10.3390/mal7143521

Ahmed, S. F., Alam, M. S. B., Hassan, M., Rozbu, M. R, Ishtiak,
T., Rafa, N., Mofijur, M., Shawkat Ali, A. B. M., & Gandomi, A.
H. (2023). Deep learning modelling techniques: Current
progress, applications, advantages, and challenges. Atrtificial
Intelligence Review, 56(11), 13521-13617.
https://doi.org/10.1007/s10462-023-10420-9

Yogi. (2024). TDD and BDD comparison dataset. Kaggle.
Retrieved November 19, 2024, from
https://www.kaggle.com/datasets/yogi2727/tdd-and-bdd-
comparison

Jurnal Informatika Ekonomi Bisnis — Vol. 6, Iss. 4 (2024) 792-798

798

